TITAN PLATE C CONCRETE

PIASTRE PER FORZE DI TAGLIO

VERSATILE

Utilizzabile per il collegamento continuo alla sottostruttura sia di pannelli X-LAM (Cross Laminated Timber) che di pannelli intelaiati.

INNOVATIVA

Progettata per essere fissata con chiodi o viti, con fissaggio paziale o totale. Possibilità di installazione anche in presenza di malta di allettamento.

CALCOLATA E CERTIFICATA

Marcatura CE secondo EN 14545. Disponibile in due versioni. TCP300 con spessore maggiorato ottimizzata per X-LAM.

CARATTERISTICHE

FOCUS	giunzioni a taglio su calcestruzzo
ALTEZZA	200 300 mm
SPESSORE	3,0 4,0 mm
FISSAGGI	LBA, LBS, VIN-FIX, HYB-FIX, AB1, SKR

MATERIALE

Piastra forata bidimensionale in acciaio al carbonio con zincatura galvanica.

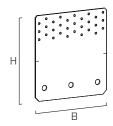
CAMPI DI IMPIEGO

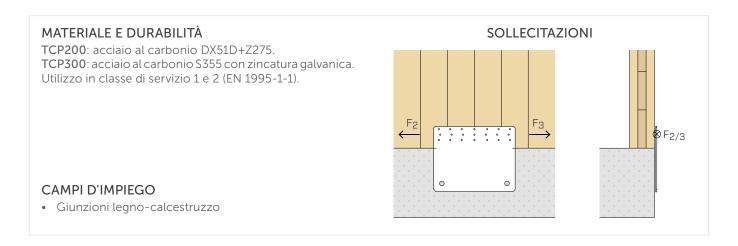
Giunzioni a taglio legno-calcestruzzo per pannelli e travi in legno

- X-LAM, LVL
- legno massiccio e lamellare
- struttura a telaio (platform frame)
- pannelli a base di legno

SOPRAELEVAZIONI

Ideale per realizzare giunzioni piane tra elementi in calcestruzzo o muratura e pannelli in X-LAM. Realizzazione di connessioni continue a taglio.

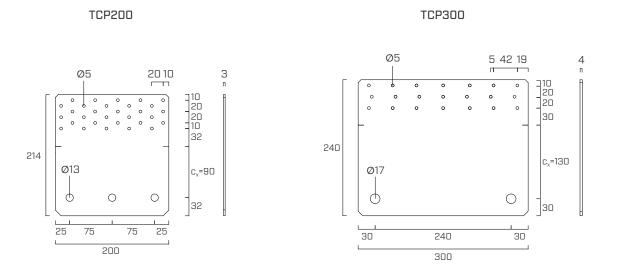

CORDOLO IN CALCESTRUZZO


Configurazioni di fissaggio versatili. Soluzioni progettate, calcolate, testate e certificate con fissaggio parziale e totale, con direzione delle fibre orizzontale o verticale.

■ CODICI E DIMENSIONI

TITAN PLATE TCP

CODICE	В	Н	fori	n _v Ø5	S		pz.
	[mm]	[mm]		[pz.]	[mm]	g	
TCP200	200	214	Ø13	30	3	•	10
TCP300	300	240	Ø17	21	4	•	5



■ PRODOTTI ADDIZIONALI - FISSAGGI

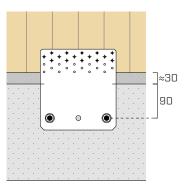
tipo	descrizione		d	supporto
			[mm]	
LBA	chiodo Anker		4	27/11
LBS	vite per piastre	() 1111111111111+	5	27771
SKR	ancorante avvitabile		12 - 16	
VIN-FIX(*)	ancorante chimico		M12 - M16	
HYB-FIX	ancorante chimico		M12 - M16	

 $^{^{(*)}}$ Per maggiori informazioni fare riferimento alla scheda tecnica disponibile sul sito www.rothoblaas.it

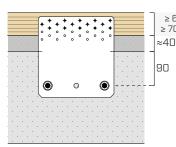
GEOMETRIA

INSTALLAZIONE

LEGNO distanze minime	nime		chiodi LBA Ø4	viti LBS Ø5	
C/GL	a _{4,t}	[mm]	≥ 20	≥ 25	
X-LAM	a _{3,t}	[mm]	≥ 28	≥ 30	

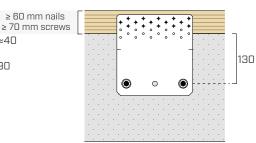

- C/GL: distanze minime per legno massiccio o lamellare secondo normativa EN 1995-1-1 in accordo a ETA considerando una massa volumica degli elementi lignei $\rho_k \le 420 \text{ kg/m}^3$
- X-LAM distanze minime per Cross Laminated Timber in accordo a ÖNORM EN 1995-1-1 (Annex K) per chiodi ed a ETA 11/0030 per viti

0 0

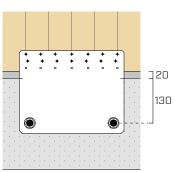

FISSAGGIO PARZIALE

In presenza di esigenze progettuali quali sollecitazioni di diversa entità o presenza di uno strato di livellamento tra la parete e il piano di appoggio, è possibile adottare chiodature parziali precalcolate oppure posizionare le piastre secondo necessità (es. piastre ribassate) avendo cura di rispettare le distanze minime indicate in tabella e verificare la resistenza del gruppo di ancoranti lato calcestruzzo tenendo conto dell'incremento di distanza dal bordo (cx). Di seguito si riportano alcuni esempi delle possibili configurazioni limite:

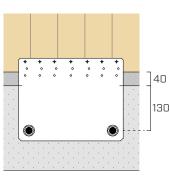
TCP200



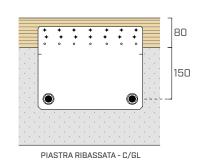
PARZIALE 15 FISSAGGI - X-LAM

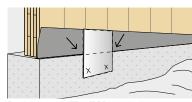

≥ 60 mm nails

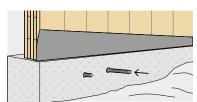
PARZIALE 15 FISSAGGI - C/GL

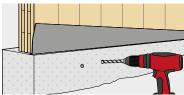


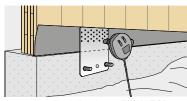
PIASTRA RIBASSATA - C/GL

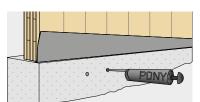

TCP300


PARZIALE 14 FISSAGGI - X-LAM


PARZIALE 7 FISSAGGI - X-LAM

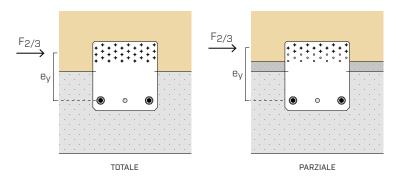

MONTAGGIO


Posizionare TITAN TCP con la linea tratteggiata all'interfaccia legno-calcestruzzo e segnare i fori


Iniezione dell'ancorante e posizionamento delle barre filettate


Rimozione della piastra TITAN TCP e foratura del calcestruzzo

Posa in opera della piastra TITAN TCP e


Pulitura accurata dei fori

Posizionamento di dadi e rondelle mediante un'adeguata coppia di serraggio

■ VALORI STATICI | GIUNZIONE A TAGLIO | LEGNO-CALCESTRUZZO TCP200

RESISTENZA LATO LEGNO

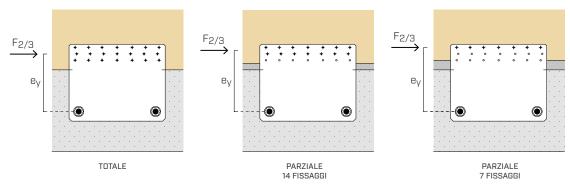
			LEGNO			ACCIAIO		CALCESTRUZZO		
configurazione	fissaggi fori Ø5			R _{2/3,k timber} ⁽¹⁾	R _{2/3,k X-LAM} (2)	R _{2/3,k steel}		fissaggi fori Ø13		
su legno	tipo	Ø x L	n _v					Ø	n _v	e _y ⁽³⁾
		[mm]	[pz.]	[kN]	[kN]	[kN]	Ysteel	[mm]	[pz.]	[mm]
• fissaggio totale	chiodi LBA	Ø4,0 x 60	30	55,6	70,8	24.0	Үм2	NA4.2		147
	viti LBS	Ø5,0 x 60	30	54,1	69,9	21,8				147
<i>6</i> ii-l-	chiodi LBA	Ø4,0 x 60	15	27,8	35,4	20.5	20,5 γ _{M2}	M12	2	162
fissaggio parziale	viti LBS	Ø5,0 x 60	15	27,0	35,0	20,5				102

RESISTENZA LATO CALCESTRUZZO

Valori di resistenza su calcestruzzo di alcune delle possibili soluzioni di ancoraggio, in accordo alle configurazioni adottate per il fissaggio su legno (e_y) . Si ipotizza che la piastra sia posizionata con le tacche di montaggio in corrispondenza dell'interfaccia legno-calcestruzzo (distanza ancorante-bordo calcestruzzo $c_x = 90$ mm).

			fissaggio totale (e _y = 147 mm)	fissaggio parziale (e _y = 162 mm)
configurazione	fissaggi	fori Ø13	R _{2/3,d} ,	concrete
su calcestruzzo	tipo	ØxL		
		[mm]	[kN]	[kN]
	VIN-FIX 5.8	M12 x 140	12,6	11,5
• non fessurato	VIIN-LIV 2.0	M12 x 195	13,4	12,2
	SKR-CE	12 x 90	12,6	11,4
	AB1	M12 x 100	13,1	11,9
	VIN FIVE O	M12 x 140	8,9	8,1
	VIN-FIX 5.8	M12 x 195	9,5	8,7
• fessurato	SKR-CE	12 x 90	8,9	8,1
	AB1	M12 x 100	9,2	8,4
ii-	LIVD FIV 0 0	M12 x 140	6,6	6,1
• seismic	HYB-FIX 8.8	M12 x 195	8,1	7,4

NOTE:


⁽¹⁾ Valori di resistenza per utilizzo su trave di banchina in legno massiccio o lamellare, calcolati considerando il numero efficace in accordo a Prospetto 8.1 (EN 1995 -1-1).

⁽²⁾ Valori di resistenza per utilizzo su X-LAM.

 $^{^{(3)}}$ Eccentricità di calcolo per la verifica del gruppo di ancoranti su calcestruzzo.

■ VALORI STATICI | GIUNZIONE A TAGLIO | LEGNO-CALCESTRUZZO

TCP300

RESISTENZA LATO LEGNO

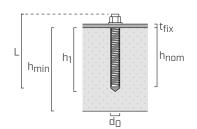
		LEGNO					ACCIAIO		CALCESTRUZZO	
configurazione	f	fissaggi fori Ø5			R _{2/3,k X-LAM} (2)	R _{2/3,k steel}		fissaggi fori Ø17		
su legno	tipo	ØxL	n _v					Ø	n _v	e _y (3)
		[mm]	[pz.]	[kN]	[kN]	[kN]	Ysteel	[mm]	[pz.]	[mm]
<i>C</i>	chiodi LBA	Ø4,0 x 60	21	38,4	49,6	64.0			100	
fissaggio totale	viti LBS	Ø5,0 x 60	21	36,9	48,9	64,0	Үм2			180
fissaggio parziale	chiodi LBA	Ø4,0 x 60	14	25,6	33,0	60.5		M16		190
14 fissaggi	viti LBS	Ø5,0 x 60	14	24,6	32,6	60,5	Үм2	M16	2	190
fissaggio parziale	chiodi LBA	Ø4,0 x 60	7	12,8	16,5	57.6				200
7 fissaggi	viti LBS	Ø5,0 x 60	7	12,3	16,3	57,0	57,6 γ _{M2}			200

RESISTENZA LATO CALCESTRUZZO

Valori di resistenza su calcestruzzo di alcune delle possibili soluzioni di ancoraggio, in accordo alle configurazioni adottate per il fissaggio su legno (e_y) . Si ipotizza che la piastra venga posizionata con le tacche di montaggio in corrispondenza dell'interfaccia legno-calcestruzzo (distanza ancorante-bordo calcestruzzo $c_x = 130 \text{ mm}$).

			fissaggio totale (e _y = 180 mm)	fissaggio parziale (e _y = 190 mm)	fissaggio parziale (e _y = 200 mm)			
configurazione	fissaggi	fori Ø17	R _{2/3,d} concrete					
su calcestruzzo	tipo	ØxL						
		[mm]	[kN]	[kN]	[kN]			
	VIN-FIX 5.8	M16 x 195	29,6	28,3	27,0			
• non fessurato	SKR-CE	16 x 130	29,7	28,2	26,8			
	AB1	M16 x 145	30,2	28,7	27,3			
	VIN-FIX 5.8	M16 x 195	21,0	20,0	19,1			
• fessurato	SKR-CE	16 x 130	21,0	19,9	19,0			
	AB1	M16 x 145	21,4	20,3	19,3			
. aaiamia	LIVD FIV 0 0	M16 x 195	16,8	16,2	15,6			
• seismic	HYB-FIX 8.8	M16 x 245	18,6	17,7	16,9			

PRINCIPI GENERALI:


Principi generali di calcolo si rimanda a pag. 7

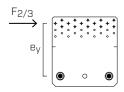
■ PARAMETRI DI INSTALLAZIONE ANCORANTI | TCP200 - TCP300

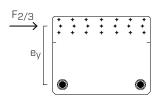
installazione	tipo ancora	nte	t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	tipo	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX 5.8	M12140	7	442	112	120	1.4		
	HYB-FIX 8.8	M12 x 140	3	112	112	120	14		
TCD200	SKR-CE	12 x 90	3	64	87	110	10	150	
TCP200	AB1	M12 x 100	3	70	80	85	12		
	VIN-FIX 5.8	M4240F	7	170	170	175	14	200	
	HYB-FIX 8.8	M12 x 195	3					200	
	VIN-FIX 5.8	M16 x 195	4	4 164	164	170	18		
	HYB-FIX 8.8	M10 X 193	4			1/0	10		
TCP300	SKR-CE	16 x 130	4	85	126	150	14	200	
	AB1	M16 x 145	4	85	97	105	16		
	HYB-FIX 8.8	M16 x 245	4	210	210	215	18	250	

Barra filettata pretagliata INA completa di dado e rondella: si rimanda alla scheda tecnica INA sul sito www.rothoblaas.it

t_{fix} h_{nom} h_{ef} h₁ d₀ h_{min}

spessore piastra fissata profondità di inserimento profondità effettiva di ancoraggio profondità minima foro diametro foro nel calcestruzzo spessore minimo calcestruzzo


■ VERIFICA ANCORANTI PER CALCESTRUZZO | TCP200 - TCP300


Il fissaggio al calcestruzzo tramite ancoranti deve essere verificato sulla base delle forze sollecitanti gli ancoranti stessi che dipendono dalla configurazione di fissaggio lato legno.

La posizione e il numero di chiodi/viti determinano il valore di eccentricità e_y, inteso come la distanza tra il baricentro della chiodatura e quello degli ancoranti.

Il gruppo di ancoranti deve essere verificato per:

$$V_{Sd,x} = F_{2/3,d}$$

 $M_{Sd,z} = F_{2/3,d} \times e_y$

PRINCIPI GENERALI:

I valori caratteristici sono secondo normativa EN 1995-1-1. I valori di progetto degli ancoranti per calcestruzzo sono calcolati in accordo alle rispettive Valutazioni Tecniche Europee.

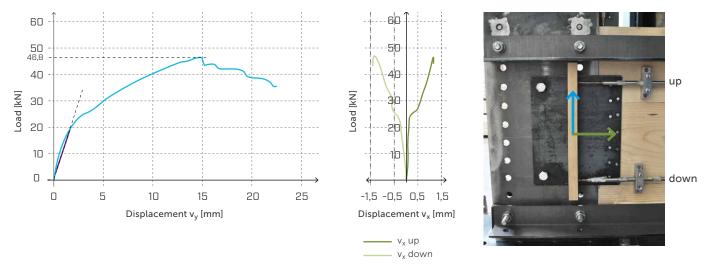
Il valore di resistenza di progetto della connessione si ricava dai valori tabellati come segue:

$$R_{d} = min \begin{cases} \frac{(R_{k, timber} \text{ or } R_{k, CLT}) \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases}$$

l coefficienti k_{mod} , γ_M e γ_{steel} sono da assumersi in funzione della normativa vigente utilizzata per il calcolo.

- In fase di calcolo si è considerata una massa volumica degli elementi lignei pari a $\rho_k=350~\text{kg/m}^3$ e calcestruzzo C25/30 con armatura rada e spessore minimo indicato in tabella.
- Il dimensionamento e la verifica degli elementi in legno e in calcestruzzo devono essere svolti a parte.
- I valori di resistenza sono validi per le ipotesi di calcolo definite in tabella; per condizioni al contorno differenti da quelle tabellate (es. distanze minime dai bordi), la verifica degli ancoranti lato calcestruzzo può essere svolta tramite software di calcolo MyProject in funzione delle esigenze progettuali.
- Progettazione sismica in categoria di prestazione C2, senza requisiti di duttilità sugli ancoranti (opzione a2) progettazione elastica in accordo a EOTA TR045. Per ancoranti chimici si ipotizza che lo spazio anulare tra l'ancorante e il foro della piastra sia riempito ($\alpha_{\rm gap}=1$).

INDAGINI SPERMENTALI | TCP300


Al fine di calibrare i modelli numerici utilizzati per la progettazione e la verifica della piastra TCP300, è stata condotta una campagna sperimentale in collaborazione con l'Istituto per la BioEconomia (IBE) - San Michele all'Adige.

Il sistema di connessione, chiodato o avvitato a pannelli in X-LAM, è stato sollecitato a taglio tramite prove monotone in controllo di spostamento registrandone carico, spostamento nelle due direzioni principali e modalità di collasso.

I risultati ottenuti sono stati utilizzati per validare il modello analitico di calcolo per la piastra TCP300, basato sull'ipotesi che il centro di taglio sia posto in corrispondenza del baricentro dei fissaggi su legno e quindi che gli ancoranti, solitamente punto debole del sistema, siano sollecitati oltre che dalle azioni taglianti anche dal momento locale.

Lo studio in diverse configurazioni di fissaggio (chiodi Ø4/viti Ø5, chiodatura totale, parziale con 14 connettori, parziale con 7 connettori) evidenzia come il comportamento meccanico della piastra sia fortemente influenzato dalla **rigidezza relativa dei connettori** sul legno rispetto a quella degli ancoranti, nei test simulati da bullonatura su acciaio.

In tutti i casi si è osservata una modalità di rottura a taglio dei fissaggi su legno che non comporta rotazioni evidenti della piastra. Solo in alcuni casi (chiodatura totale) la rotazione non trascurabile della piastra comporta un incremento delle sollecitazioni sui fissaggi nel legno derivante da una ridistibuzione del momento locale con conseguente sgravio di sollecitazione sugli ancoranti, che rappresentano il punto limitante la resistenza globale del sistema.

Diagrammi forza-spostamento per provino TCP300 con chiodatura parziale (n. 14 chiodi LBA Ø4 x 60 mm).

Ulteriori indagini si rendono necessarie al fine di poter definire un modello analitico generalizzabile alle diverse configurazioni di utilizzo della piastra che sia in grado di fornire le effettive rigidezze del sistema e la ridistribuzione delle sollecitazioni al variare delle condizioni al contorno (connettori e materiali base).