-- b_2

ALUMINI HT

CONCEALED BRACKET WITHOUT HOLES

- It allows to connect secondary beams with limited width (starting from 55 mm)
- Strengths in all directions: vertical, horizontal and axial. They can be used in inclined joints, for timber-to-timber and timber-to-concrete connections
- The use of KGL EVO screws and SBD-HT self-drilling dowels allows excellent installation tolerance

CODE	H [mm]	L _A	L _B	pcs
ALUMINIHT65	65	45	110	25
ALUMINIHT95	95	45	110	25
ALUMINIHT125	125	45	110	25
ALUMINIHT155	155	45	110	15

 d_1

 $\exists d_1$

را ل∟

CODE	H L _A [mm]		L _B [mm]	pcs
ALUMINIHT2165	2165	45	110	1

FASTENERS

KGL EVO | PAN HEAD SCREW WITH EVO COATING

d ₁	CODE	L [mm]	b [mm]	pcs
5 TX 25	KGLEVO560	60	35	200

SBD-HT | SELF-DRILLING DOWEL

d ₁	CODE	L	b ₂	b ₁	pcs
[mm]		[mm]	[mm]	[mm]	
7,5 TX 40	SBD7555	55	10	-	50
	SBD7575H	75	10	8	50
	SBD7595H	95	10	15	50

SKS ALUMINI | SCREW ANCHOR WITH COUNTERSUNK HEAD

d ₁ [mm]	CODE	L [mm]	pcs
6,5 TX 30	SKSALUMINI660	60	100

STRUCTURAL VALUES

TIMBER-TO-TIMBER JOINT | F_v

			SECONDARY BEAM	MAIN BEAM	
ALUMINI HT	SBD-HT dowels		SBD-HT dowels	KGL EVO screw	
Н	b _J	$h_{\rm J}$	Ø7,5	Ø5 x 60	$R_{V,k}$
[mm]	[mm]	[mm]	[pcs Ø x L]	[pcs]	[kN]
65	60	90	2 - Ø7,5 x 55	7	2,9
95	60	120	3 - Ø7,5 x 55	11	7,1
125	60	150	4 - Ø7,5 x 55	15	12,9
155	60	180	5 - Ø7,5 x 55	19	19,9

TIMBER-TO-TIMBER JOINT | F_{lat}

			SECONDARY BEAM	MAIN BEAM			
ALUMINI HT			SBD-HT dowels	KGL EVO screw			
н	b _J	$h_{\rm J}$	Ø7,5	Ø5 x 60	R _{lat,k.alu}	R _{lat,k,beam}	
[mm]	[mm]	[mm]	[pcs Ø x L]	[pcs]	[kN]	[kN]	
65	60	90	2 - Ø7,5 x 55	7	1,6	3,1	
95	60	120	3 - Ø7,5 x 55	11	2,3	4,1	
125	60	150	4 - Ø7,5 x 55	15	3,0	5,1	
155	60	180	5 - Ø7,5 x 55	19	3,8	6,2	

TIMBER-TO-TIMBER JOINT | Fax

			SECONDARY BEAM	MAIN BEAM		
ALUMINI HT	SBD-HT dowels		SBD-HT dowels	KGL EVO screw		
Н	b _J	$h_{\mathtt{J}}$	Ø7,5	Ø5 x 60	$R_{V,k}$	
[mm]	[mm]	[mm]	[pcs Ø x L]	[pcs]	[kN]	
65	60	90	2 - Ø7,5 x 55	7	15,5	
95	60	120	3 - Ø7,5 x 55	11	24,3	
125	60	150	4 - Ø7,5 x 55	15	33,2	
155	60	180	5 - Ø ,5 x 55	19	42,0	

STRUCTURAL VALUES

TIMBER-TO-CONCRETE JOINT | F_V

			SECONDARY BEAM timber	MAIN BEAM uncracked concrete		
ALUMINI HT			SBD-HT dowels	SKSALUMINI660 anchor		
Н	b _J h _J Ø7,5		R _{V,k}	Ø6,5 x 60	R _{V,d concrete}	
[mm]	[mm]	[mm]	[pcs Ø x L]	[kN]	[pcs Ø x L]	[kN]
125	60	150	3 - Ø7,5 x 55	15,6	4	6,0
155	60	180	3 - Ø7,5 x 55	15,6	5	7,3

GENERAL PRINCIPLES

- Resistance values for the fastening system are valid for the calculation examples shown in the table.
 The calculation process used a timber characteristic density of ρ_k = 385 kg/m³ and C20/25 concrete with a thin reinforcing layer, where edge-distance is not a limiting factor.
- The coefficients k_{mod} and y_M should be taken according to the current regulations used for the calculation.
 Dimensioning and verification of timber and concrete elements must be carried out separately.

STRUCTURAL VALUES | F_v

TIMBER-TO-TIMBER

- Characteristic values comply with the EN 1995-1-1 standard in accordance with ETA-09/0361.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

 $\bullet \quad \text{In some cases the connection shear strength } R_{V,k} \text{ is notably large and may be higher than the secondary beam strength. } Particular attention should be paid to the paid to$ $shear\ check\ of\ the\ reduced\ timber\ cross-section\ in\ correspondence\ with\ the\ bracket\ location.$

STRUCTURAL VALUES | F_{lat} | F_{ax}

TIMBER-TO-TIMBER

• Characteristic values comply with the EN 1995-1-1 standard in accordance with ETA-09/0361. Design values can be obtained from characteristic values as follows:

$$R_{lat,d} = min \; \left\{ \begin{array}{l} \frac{R_{lat,k,alu}}{Y_{M,alu}} \\ \frac{R_{lat,k,beam} \cdot k_{mod}}{Y_{M,T}} \end{array} \right.$$

$$R_{ax,d} = \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M}$$

with $\gamma_{M,T}$ partial coefficient of the timber.

STRUCTURAL VALUES | F_v

TIMBER-TO-CONCRETE

- Characteristic values on wood side are consistent with EN 1995-1-1 and in accordance with ETA-09/0361. Fastening on concrete is not CE marked, it is advisable to use the joint system for non-structural applications. Fastening on concrete is not CE marked, it is advisable to use the joint system for non-structural applications.
- Design resistance values can be obtained from the tabled values as follows:

$$R_d = min$$

$$\begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_M} \\ R_{d, concrete} \end{cases}$$

· Because of the arrangement of the fasteners on concrete, special care should be taken during installation.

ANCHORS INSTALLATION

anchor	d ₁	L	d ₀	t	TX	T _{inst}
differior	[mm]	[mm]	[mm]	[mm]		[Nm]
SKSALUMINI660	6,5	60	5	≈ 10	TX30	15

