P10 - P20

EMBEDDED TUBULAR POST BASE

RAISED

To be embedded in concrete, it allows keep the column distant from the ground ensuring high durability of the timber.

$H \ge 300 \text{ mm}$

The column can be installed at a distance of more than 300 mm from the ground in accordance with DIN 68800.

ADJUSTABLE

In the P20 version, the height can be adjusted as required.

CHARACTERISTICS

FOCUS	raised structures
COLUMNS	from 70 x 70 mm to 160 x 160 mm
HEIGHT	300 500 mm
FASTENERS	HBS PLATE EVO, XEPOX

MATERIAL

Hot dip bright zinc plated carbon steel (P10) and Dac Coat zinc plating (P20).

FIELDS OF USE

Outdoor joints. Suitable for service class 1, 2 and 3 $\,$

- solid timber and glulam
- CLT, LVL

BALCONIES AND TERRACES

Ideal for creating high durability concealed joints for outdoor wooden columns.

DISTANCE 300 mm

In the 500 mm height versions it guarantees a distance between the ground and the column head greater than 300 mm.

■ CODES AND DIMENSIONS

P10

CODE	Н	Р	top plate	top holes	bottom plate	pcs
	[mm]	[mm]	[mm]	[n. x mm]	[mm]	
P10300	312	300	Ø100 x 6	4 x Ø11,0	80 x 80 x 6	1
P10500	512	500	Ø100 x 6	4 x Ø11,0	80 x 80 x 6	1

P20

CODE	Н	Р	top plate	top holes	bottom plate	rod Ø x L	pcs
	[mm]	[mm]	[mm]	[n. x mm]	[mm]	[mm]	
P20300	312	300	100 x 100 x 8	4 x Ø11,0	80 x 80 x 6	M24 x 170	1
P20500	512	500	100 x 100 x 8	4 x Ø11,0	80 x 80 x 6	M24 x 170	1

HBS PLATE EVO

CODE	d ₁	L b		TX	pcs
	[mm]	[mm]	[mm]		
HBSPEVO880	8	80	55	TX 40	100

P10: S235 carbon steel with hot galvanising. P20: S235 carbon steel with special coating Dac Coat. To be used in service classes 1, 2 and 3 (EN 1995-1-1).

FIELD OF USE

• Timber column drowned in the casting

■ INSTALLATION ON CONCRETE

	CODE	Н	H_{min}	a _{max} *	D_{max}
		[mm]	[mm]	[mm]	[mm]
D4.0	P10300	312	156	-	156
P10	P10500	512	256	-	256
D20	P20300	312	156	70	226
P20	P20500	512	256	70	326

GEOMETRY

P10

STATIC VALUES

COMPRESSION STRENGTH

P10

CODE	B _{s,min}	Н	H _{min}	R _{1,c k timber}		R _{1,c k steel}			
	[mm]	[mm]	[mm]	[kN]	Ytimber	[kN]	Ysteel	[kN]	Ysteel
P10300	□100 x 100	312	156	00.6	(1)	70.7		107,0	
P10500	OØ100	512	256	98,6	6 γ _{MT} ⁽¹⁾	78,7	Υмо	99,3	Y _{M1}

P20

CODE	B _{s,min}	Н	H _{min}	a _{max}	R _{1,c k timber}		timber R _{1,c k steel}			
	[mm]	[mm]	[mm]	[mm]	[kN]	Ytimber	[kN]	Ysteel	[kN]	Ysteel
P20300	□100 x 100	312	156	70	07.7	. (1)	FO F		106,0	
P20500		512	256	70	93,7	γ _{MT} ⁽¹⁾	γ _{ΜΤ} ⁽²⁾ 59,5	59,5	Υмо	106,0

NOTES:

 $^{(1)}$ y_{MT} partial coefficient of the timber.

GENERAL PRINCIPLES:

- The characteristic values are in accordance with ETA-10/0422 and valid for a minimum anchoring depth in the concrete casting of $\rm H_{min}.$
- The design values are obtained from the characteristic values as follows:

$$R_d = min \begin{cases} \frac{R_{i,k \ timber} \cdot k_{mod}}{Y_{timber}} \\ \frac{R_{i,k \ steel}}{Y_{steel}} \end{cases}$$

The coefficients $k_{\mbox{\scriptsize mod}}$ and y should be taken according to the current regulations used for the calculation.

The verification of the fastener-to-concrete connection must be carried out separately.

- For the calculation process a timber density $\rho_k = 350 \text{ kg/m}^3$ has been considered
- Dimensioning and verification of timber and concrete elements must be carried out separately.