KGL EVO

L

b

 d_1

 d_{κ}

KGL EVO Ø5

TORNILLO CON REVESTIMIENTO C4 EVO Y CABEZA TRONCOCÓNICA

- Revestimiento EVO multicapa a base de resina epóxica y partículas de aluminio. Ausencia de herrumbre tras 1440 horas de exposición en niebla salina (ISO 9227)
- Se puede utilizar en exteriores, en zonas costeras e industriales
- La versión de 5,0 mm es ideal para uniones madera-madera y la versión de 8 mm, para perfiles metálicos y pies de pilar

MATERIAL: acero al carbono con revestimiento de 20 μm de alta resistencia a la corrosión

CÓDIGO

KGLEVO560

HBSPEVO840

KGLEVO860

KGLEVO880

KGLEVO8100

 $\mathsf{d_1}$

[mm]

TX 25

8

TX 40

 \mathbf{d}_{K}

[mm]

14,50

L

[mm]

40

60

80

100

b

[mm]

35

32

52

55

75

 A_T

[mm]

25

8

8

25

25

 A_P

[mm]

1,0÷10

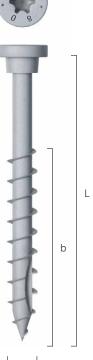
1,0÷15

1,0÷15

1,0÷15

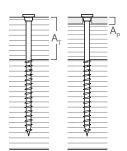
1,0÷15

unid.

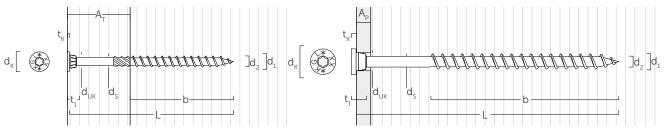

200

100

100


100

100


 d_1 KGL EVO Ø8

A espesor máximo fijable

GEOMETRÍA Y CARACTERÍSTICAS MECÁNICAS

KGL EVO Ø5

KGL EVO Ø8

diámetro nominal	d ₁	[mm]	5	8
diámetro cabeza	d _K	[mm]	9,65	14,50
diámetro núcleo	d ₂	[mm]	3,40	5,40
diámetro cuello	d _S	[mm]	3,65	5,80
espesor cabeza	t ₁	[mm]	5,50	8,00
espesor arandela	t _K	[mm]	1,00	3,40
diámetro bajo cabeza	d _{UK}	[mm]	6,00	10,00
diámetro pre-agujero ⁽¹⁾	d _V	[mm]	3,00	5,00
momento plástico característico	$M_{y,k}$	[Nm]	5,40	20,10
parámetro característico de resistencia a extracción ⁽²⁾	f _{ax,k}	[N/mm ²]	11,70	11,70
parámetro característico de penetración de la cabeza ⁽²⁾	f _{head,k}	[N/mm ²]	10,50	10,50
resistencia característica de tracción	f _{tens.k}	[kN]	7,90	20,10

Para aplicaciones con materiales diferentes o con densidad alta, consultar ETA-11/0030.

VALOREC ECTÁTICOS

VALORES ESTATICOS					(CORTE	TRACCIÓN			
geometría			madera-madera	acero - madera placa fina ⁽¹⁾		acero - madera placa gruesa ⁽²⁾		extracción de la rosca ⁽³⁾	penetración cabeza ⁽⁴⁾	
	Å		A		JS _{PLATE}		S _{PLATE}		↑¶↑ 	
d_1	L	b	Α	R _{V,k}	R _{V,k}		$R_{V,k}$		R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]		[kN]	[kN]		[kN]	[kN]
5	60	35	25	1,43	S _{PLATE} = 2,5 mm	1,82	S _{PLATE} = 5,0 mm	2,33	2,37	1,13
8	40	32	8	1,18		2,13	S _{PLATE} = 8,0 mm	3,66	3,47	2,55
	60	52	8	1,18	S _{PLATE} = 4,0 mm	3,31		5,12	5,63	2,55
	80	55	25	2,67		4,29		5,45	5,96	2,55
	100	75	25	2,67		4,83		5,99	8,12	2,55

NOTAS

- (1) Las resistencias características al corte son evaluadas considerando el caso de placa fina (S_{PLATE} ≤ 0,5 d₁).
 (2) Las resistencias características al corte son evaluadas considerando el caso de placa gruesa (S_{PLATE} ≥ d₁).
 (3) La resistencia axial a la extracción de la rosca se ha evaluado considerando un ángulo de 90° entre las fibras y el conector y con una longitud de penetración igual a b.
- (4) La resistencia axial de penetración de la cabeza ha sido evaluada sobre el elemento de madera.

PRINCIPIOS GENERALES

- Los valores característicos respetan la normativa EN 1995:2014 conforme con ETA-11/0030.
- Los valores de proyecto se obtienen a partir de los valores característicos de la siguiente manera:

$$R_d = \frac{R_k \cdot k_{mod}}{V_{tot}}$$

- Los coeficientes γ_M y k_{mod} se deben tomar de acuerdo con la normativa vigente utilizada para el cálculo. Para los valores de resistencia mecánica y para la geometría de los tornillos se han tomado como referencia las indicaciones de ETA-11/0030.
- En la fase de cálculo se ha considerado una masa volúmica de los elementos de madera equivalente a ρ_k = 420 kg/m³
- Los valores han sido calculados considerando la parte roscada completamente introducida en el elemento de madera. El dimensionamiento y la comprobación de los elementos de madera y de acero deben efectuarse aparte.
- Las resistencias características al corte se evalúan para tornillos introducidos sin pre-agujero; en caso de introducir tornillos con pre-agujero se pueden obtener valores de resistencia superiores.

 $^{^{(1)}}$ Pre-agujero válido para madera de conífera (softwood). $^{(2)}$ Válido para madera de conífera (softwood) - densidad máxima 440 kg/m³. Densidad asociada ρ_a = 350 kg/m³.