# WHT PLATE C CONCRETE



### PLACAS PARA FUERZAS DE TRACCIÓN

### **DOS VERSIONES**

WHT PLATE 440 es ideal para estructuras de entramado (platform frame); WHT PLATE 540 es ideal para estructuras de panel CLT (Cross Laminated Timber).

### **UNIONES PLANAS**

Ideal para realizar conexiones continuas a tracción de paneles de CLT (Cross Laminated Timber) y de entramado ligero (platform frame) a la subestructura de hormigón armado.

### **CALIDAD**

La alta resistencia a la tracción permite optimizar la cantidad de placas instaladas, asegurando un considerable ahorro de tiempo. Valores calculados y certificados según el marcado CE.

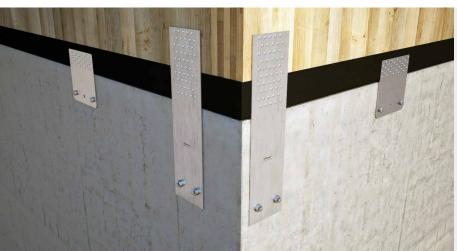


### CARACTERÍSTICAS

| PECULIARIDAD | uniones de tracción en hormigón |
|--------------|---------------------------------|
| ALTURA       | 440   540 mm                    |
| ESPESOR      | 3,0 mm                          |
| FIJACIONES   | LBA, LBS, SKR, VIN-FIX, HYB-FIX |



### **MATERIAL**


Placa perforada bidimensional de acero al carbono con zincado galvanizado.

### CAMPOS DE APLICACIÓN

Uniones de corte madera-hormigón para paneles y montantes de madera

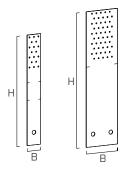
- CLT, LVL
- madera maciza y laminada
- estructura de entramado (platform frame)
- paneles de madera





### MADERA-HORMIGÓN

Además de su función natural, es ideal para resolver puntualmente situaciones especiales que requieren la transferencia de fuerzas de tracción de la madera al hormigón.


### **POLIVALENTE**

En presencia de solicitaciones de diferente magnitud o de una capa de nivelación, es posible usar clavos parciales precalculados.

### ■ CÓDIGOS Y DIMENSIONES

### WHT PLATE C

|             |      | Н    | agujeros | n <sub>v</sub> Ø5 | S    |   | unid. |
|-------------|------|------|----------|-------------------|------|---|-------|
|             | [mm] | [mm] | [mm]     | unid.             | [mm] | g |       |
| WHTPLATE440 | 60   | 440  | Ø17      | 18                | 3    | • | 10    |
| WHTPLATE540 | 140  | 540  | Ø17      | 50                | 3    | • | 10    |



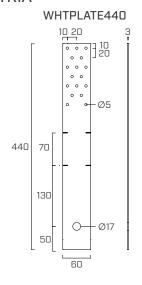
### MATERIAL Y DURABILIDAD

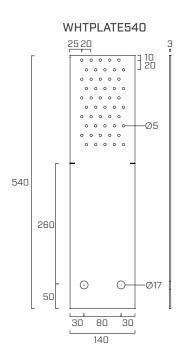
WHT PLATE C: acero al carbono DX51D+Z275. Uso en clase de servicio 1 y 2 (EN 1995-1-1).

# F<sub>1</sub>

**SOLICITACIONES** 

### CAMPOS DE APLICACIÓN


- Uniones madera-hormigón
- Uniones OSB-hormigón
- Uniones madera-acero

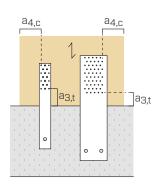

### ■ PRODUCTOS ADICIONALES - FIJACIONES

| tipo       | descripción          |              | d    | soporte       |
|------------|----------------------|--------------|------|---------------|
|            |                      |              | [mm] |               |
| LBA        | clavo anker          |              | 4    |               |
| LBS        | tornillo para placas | (Dinininini+ | 5    |               |
| AB1        | anclaje mecánico     |              | 16   |               |
| VIN-FIX(*) | anclaje químico      |              | M16  |               |
| HYB-FIX    | anclaje químico      |              | M16  |               |
| KOS        | perno                |              | M16  | <u>27777)</u> |

<sup>(\*)</sup> Para más información, consultar la ficha técnica disponible en el sitio www.rothoblaas.es

### GEOMETRÍA





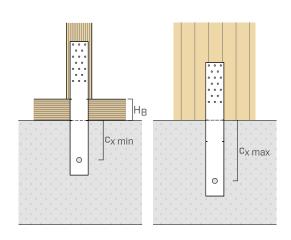



### INSTALACIÓN

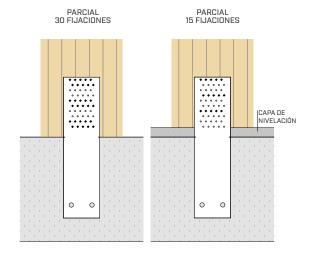
| MADERA<br>distancias mínimas |                  |      | clavos<br>LBA Ø4 | tornillos<br>LBS Ø5 |
|------------------------------|------------------|------|------------------|---------------------|
|                              | a <sub>4,c</sub> | [mm] | ≥ 20             | ≥ 25                |
| C/GL                         | a <sub>3,t</sub> | [mm] | ≥ 60             | ≥ 75                |
| CIT                          | a <sub>4,c</sub> | [mm] | ≥ 12             | ≥ 12,5              |
| CLT                          | a <sub>3,t</sub> | [mm] | ≥ 40             | ≥ 30                |

- C/GL: distancias mínimas para madera maciza o laminada según la norma EN 1995-1-1 conforme con ETA considerando una masa volúmica de los elementos de madera igual a  $\rho_k \leq 420~\text{kg/m}^3$
- CLT: distancias mínimas para Cross Laminated Timber conforme con ÖNORM EN 1995-1-1 (Annex K) para clavos y con ETA 11/0030 para tornillos

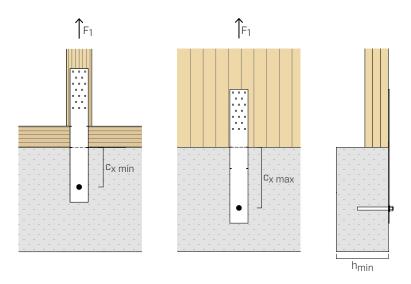



### INSTALACIÓN DE WHTPLATE440

WHT PLATE 440 se puede utilizar para diferentes sistemas de construcción (CLT/entramado) y de fijación al suelo (con/sin viga de solera, con/sin capa de nivelación). En función de si hay o no una capa intermedia y de sus dimensiones H<sub>B</sub>, respetando las distancias mínimas de las fijaciones lado madera y lado hormigón, WHT PLATE 440 debe colocarse de modo que el anclaje quede a una distancia del borde del hormigón:


130 mm  $\leq c_x \leq 200$  mm.

### INSTALACIÓN DE WHTPLATE540


En caso de necesidades de diseño, como solicitaciones de diferente magnitud, o en presencia de una capa de nivelación entre la pared y la superficie de apoyo, es posible adoptar clavados parciales precalculados y optimizados a efectos de la influencia del número eficaz n<sub>ef</sub> de fijaciones en la madera. Los clavados alternativos son posibles si se respetan las distancias mínimas previstas para los conectores.



| C <sub>X</sub>           | H <sub>B</sub> |
|--------------------------|----------------|
| [mm]                     | [mm]           |
| c <sub>x min</sub> = 130 | 70             |
| $c_{x  max} = 200$       | 0              |



# ■ VALORES ESTÁTICOS | UNIÓN DE TRACCIÓN | MADERA-HORMIGÓN WHTPLATE440

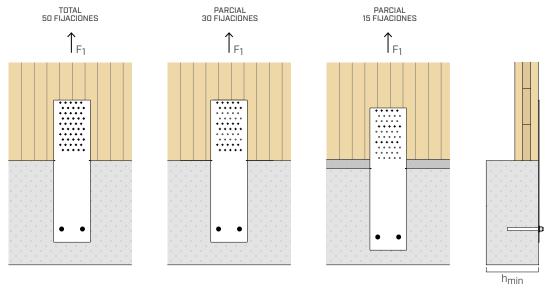


### ESPESOR MÍNIMO HORMIGÓN $h_{min} \ge 200 \text{ mm}$

|                                                          |               | R <sub>1,K</sub> MAD   | ERA               |                         | R <sub>1,K</sub> A | CERO                       | R <sub>1,d</sub> HORMIGÓN  |      |                          |      |                             |      |  |
|----------------------------------------------------------|---------------|------------------------|-------------------|-------------------------|--------------------|----------------------------|----------------------------|------|--------------------------|------|-----------------------------|------|--|
| configuración                                            | fijacion      | fijaciones agujeros Ø5 |                   | R <sub>1,k timber</sub> | R <sub>1,k</sub>   | steel                      | R <sub>1,d uncracked</sub> |      | R <sub>1,d cracked</sub> |      | R <sub>1,d seismic</sub>    |      |  |
|                                                          | tipo          | ØxL                    | n <sub>v</sub>    |                         |                    |                            | VIN-FIX 5.8<br>Ø x L       |      | VIN-FIX 5.8<br>Ø x L     |      | HYB-FIX 8.8<br><b>Ø x L</b> |      |  |
|                                                          |               | [mm]                   | [unid.]           | [kN]                    | [kN]               | Ysteel                     | [mm]                       | [kN] | [mm]                     | [kN] | [mm]                        | [kN] |  |
| • c <sub>2 min</sub> = <b>130 mm</b><br>• fijación total | clavos LBA    | Ø4,0 x 60              | 18                | 35,0                    | 34,8               |                            | M16 x 195                  | 22.6 | M16 x 195                | 16,0 | M16 x 195                   | 16,0 |  |
| • 2 anclajes M16                                         | tornillos LBS | Ø5,0 x 60              | 18                | 31,8                    | 34,0               | , <b>8</b> γ <sub>M2</sub> | M10 X 195                  | 22,0 | MTO X 132                | 10,0 | M10 X 195                   | 16,0 |  |
| • c <sub>2 max</sub> = 200 mm                            | clavos LBA    | Ø4,0 x 60              | 18                | 35,0                    | 74.0               |                            | M16 v 10F                  | 72.7 | M16 v 10F                | 22.0 | M16 v 10F                   | 22.0 |  |
| <ul><li>fijación total</li><li>2 anclajes M16</li></ul>  | tornillos LBS | Ø5,0 x 60              | 15 <sup>(1)</sup> | 27,5                    | 34,8               | Yм2                        | M16 x 195                  | 32,3 | M16 x 195                | 22,9 | M16 x 195                   | 22,9 |  |

### ESPESOR MÍNIMO HORMIGÓN $h_{min} \ge 150 \text{ mm}$

|                                                         |               | R <sub>1,K</sub> MAD | ERA               |                         | R <sub>1,K</sub> A | CERO                        | R <sub>1,d</sub> HORMIGÓN  |      |                          |      |                             |      |
|---------------------------------------------------------|---------------|----------------------|-------------------|-------------------------|--------------------|-----------------------------|----------------------------|------|--------------------------|------|-----------------------------|------|
| configuración                                           | fijacion      | ies agujeros Ø       | 5                 | R <sub>1,k timber</sub> | R <sub>1,k</sub>   | steel                       | R <sub>1,d uncracked</sub> |      | R <sub>1,d cracked</sub> |      | R <sub>1,d seismic</sub>    |      |
|                                                         | tipo          | ØxL                  | n <sub>v</sub>    |                         |                    |                             | VIN-FIX 5.8<br>Ø x L       |      | VIN-FIX 5.8<br>Ø x L     |      | HYB-FIX 8.8<br><b>Ø x L</b> |      |
|                                                         |               | [mm]                 | [unid.]           | [kN]                    | [kN]               | Ysteel                      | [mm]                       | [kN] | [mm]                     | [kN] | [mm]                        | [kN] |
| • <b>c<sub>2 min</sub> = 130 mm</b><br>• fijación total | clavos LBA    | Ø4,0 x 60            | 18                | 35,0                    | 34,8               | V                           | M16 x 130                  | 18,2 | M16 x 130                | 12,9 | M16 x 130                   | 12,9 |
| • 2 anclajes M16                                        | tornillos LBS | Ø5,0 x 60            | 18                | 31,8                    | 34,0               | Үм2                         | W10 X 120                  | 10,2 | M10 X 130                | 12,9 | MIO X 130                   | 12,9 |
| • c <sub>2 max</sub> = 200 mm                           | clavos LBA    | Ø4,0 x 60            | 18                | 35,0                    | 74.0               |                             | M16 v 170                  | 26.0 | M16 v 170                | 10 / | M16 v 170                   | 10.4 |
| <ul><li>fijación total</li><li>2 anclajes M16</li></ul> | tornillos LBS | Ø5,0 x 60            | 15 <sup>(1)</sup> | 27,5                    | 34,8               | <b>34,8</b> γ <sub>M2</sub> | M16 x 130                  | 26,0 | M16 x 130                | 18,4 | M16 x 130                   | 18,4 |


### NOTAS:

Para la configuración indicada en la tabla se aconseja no instalar los tornillos de la fila inferior respetando la distancia  $a_{3,t}$  (extremidad solicitada) = 15d = 75 mm.



## ■ VALORES ESTÁTICOS | UNIÓN DE TRACCIÓN | MADERA-HORMIGÓN

### WHTPLATE540



### ESPESOR MÍNIMO HORMIGÓN $h_{min} \ge 200 \text{ mm}$

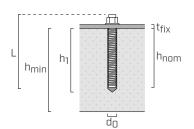
|                                                       |               | R <sub>1,K</sub> MAD | ERA            |                         | R <sub>1,K</sub> A | CERO   | R <sub>1,d</sub> HORMIGÓN <sup>(3)</sup> |      |                          |      |                             |      |
|-------------------------------------------------------|---------------|----------------------|----------------|-------------------------|--------------------|--------|------------------------------------------|------|--------------------------|------|-----------------------------|------|
| configuración                                         | fijacion      | ies agujeros Ø       | 5              | R <sub>1,k timber</sub> | R <sub>1,k</sub>   | steel  | R <sub>1,d uncracke</sub>                | d    | R <sub>1,d cracked</sub> |      | R <sub>1,d seismic</sub>    | :    |
|                                                       | tipo          | ØxL                  | n <sub>v</sub> |                         |                    |        | VIN-FIX 5.8<br><b>Ø x L</b>              |      | VIN-FIX 5.8<br>Ø x L     |      | HYB-FIX 8.8<br><b>Ø x L</b> |      |
|                                                       |               | [mm]                 | [unid.]        | [kN]                    | [kN]               | Ysteel | [mm]                                     | [kN] | [mm]                     | [kN] | [mm]                        | [kN] |
| • fijación total                                      | clavos LBA    | Ø4,0 x 60            | 50             | 83,5                    |                    |        |                                          |      |                          |      |                             |      |
| • 2 anclajes M16                                      | tornillos LBS | Ø5,0 x 60            | 50             | 81,6                    |                    |        |                                          |      |                          |      |                             |      |
| • fijación parcial <sup>(2)</sup> 30 fijaciones       | clavos LBA    | Ø4,0 x 60            | 30             | 70,8                    | 70,6               |        | M16 x 195                                | 44,1 | M16 x 195                | 31,3 | M16 x 195                   | 26,6 |
| • 2 anclajes M16                                      | tornillos LBS | Ø5,0 x 60            | 30             | 69,9                    | 70,6               | Үм2    | MIO X 193                                | 44,1 | MIO X 193                | 31,3 | MIO X 193                   | 20,0 |
| • <b>fijación parcial<sup>(2)</sup></b> 15 fijaciones | clavos LBA    | Ø4,0 x 60            | 15             | 35,4                    |                    |        |                                          |      |                          |      |                             |      |
| • 2 anclajes M16                                      | tornillos LBS | Ø5,0 x 60            | 15             | 35,0                    |                    |        |                                          |      |                          |      |                             |      |

### ESPESOR MÍNIMO HORMIGÓN $h_{min} \ge 150 \text{ mm}$

|                                                        | R <sub>1,K</sub> MADERA |                         |                      |                         |                  |        | R <sub>1,d</sub> HORMIGÓN <sup>(3)</sup>          |      |                                                |                   |                                                |         |      |         |      |
|--------------------------------------------------------|-------------------------|-------------------------|----------------------|-------------------------|------------------|--------|---------------------------------------------------|------|------------------------------------------------|-------------------|------------------------------------------------|---------|------|---------|------|
| configuración                                          | fijacion                | nes agujeros (<br>Ø x L | Ø5<br>n <sub>v</sub> | R <sub>1,k timber</sub> | R <sub>1,k</sub> | steel  | R <sub>1,d uncracke</sub><br>VIN-FIX 5.8<br>Ø x L | d    | R <sub>1,d cracked</sub><br>VIN-FIX 5.8<br>ØxL |                   | R <sub>1,d seismic</sub><br>HYB-FIX 8.8<br>ØxL | :       |      |         |      |
|                                                        |                         | [mm]                    | [unid.]              | [kN]                    | [kN]             | Ysteel | [mm]                                              | [kN] | [mm]                                           | [kN]              | [mm]                                           | [kN]    |      |         |      |
| • fijación total                                       | clavos LBA              | Ø4,0 x 60               | 50                   | 83,5                    |                  |        |                                                   |      |                                                |                   |                                                |         |      |         |      |
| • 2 anclajes M16                                       | tornillos LBS           | Ø5,0 x 60               | 50                   | 81,6                    |                  | 70.6   | 70.6                                              | 70.6 |                                                | MAG 470 <b>75</b> |                                                | M46 470 | 25.4 | M4C 470 | 24.6 |
| • fijación parcial <sup>(2)</sup>                      | clavos LBA              | Ø4,0 x 60               | 30                   | 70,8                    |                  |        |                                                   |      |                                                |                   | 75.0                                           |         |      |         |      |
| 30 fijaciones • 2 anclajes M16                         | tornillos LBS           | Ø5,0 x 60               | 30                   | 69,9                    | 70,6             | Үм2    | M16 x 130                                         | 35,9 | M16 x 130                                      | 25,4              | M16 x 130                                      | 21,6    |      |         |      |
| • fijación parcial <sup>(2)</sup>                      | clavos LBA              | Ø4,0 x 60               | 15                   | 35,4                    |                  |        |                                                   |      |                                                |                   |                                                |         |      |         |      |
| <ul><li>15 fijaciones</li><li>2 anclajes M16</li></ul> | tornillos LBS           | Ø5,0 x 60               | 15                   | 35,0                    |                  |        |                                                   |      |                                                |                   |                                                |         |      |         |      |

### NOTAS:




 $<sup>^{(2)}</sup>$  En caso de configuraciones con clavado parcial, los valores de resistencia indicados en la tabla son válidos para instalar fijaciones en la madera respetando a  $_1 > 10 d \ (n_{ef} = n).$ 

 $<sup>^{(3)}</sup>$  Los valores de resistencia lado hormigón son válidos suponiendo que se coloquen las muescas de montaje de la placa WHTPLATE540 en correspondencia de la interfaz madera-hormigón (c<sub>x</sub> = 260 mm).

### PARÁMETROS DE INSTALACIÓN ANCLAJES QUÍMICOS [1]

| tipo a       | nclaje        | t <sub>fix</sub> |      | h <sub>1</sub> | d <sub>0</sub> | h <sub>min</sub> |
|--------------|---------------|------------------|------|----------------|----------------|------------------|
| tipo         | Ø x L [mm]    | [mm]             | [mm] | [mm]           | [mm]           | [mm]             |
| VIN FIVE 0   | M16 x min 130 | 3                | 110  | 115            | 10             | 150              |
| VIN-FIX 5.8  | M16 x 195     | 3                | 164  | 170            | 18             | 200              |
| LIVE FIX O O | M16 x min 130 | 3                | 110  | 115            | 4.0            | 150              |
| HYB-FIX 8.8  | M16 x 195     | 3                | 164  | 170            | 18             | 200              |

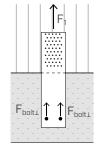
Barra roscada precortada INA provista de tuerca y arandela: consultar la ficha técnica INA en el sitio www.rothoblaas.es Barra roscada MGS clase 8.8 para cortar a medida: consultar la ficha técnica MGS en el sitio www.rothoblaas.es.



t<sub>fix</sub> h<sub>nom</sub> h<sub>ef</sub> h<sub>1</sub> d<sub>0</sub> h<sub>min</sub>

espesor de la placa fijada profundidad de inserción profundidad efectiva del anclaje profundidad mínima del agujero diámetro agujero en hormigón espesor mínimo hormigón

### ■ DIMENSIONAMIENTO ANCLAJES ALTERNATIVOS


La fijación al hormigón mediante anclajes distintos a los indicados en la tabla tiene que comprobarse basándose en las fuerzas de solicitación de los anclajes, que se pueden determinar mediante los coeficientes  $k_{\text{LL}}$ . La fuerza lateral de corte que actúa sobre un solo anclaje se calcula como sigue:

$$F_{bolt\perp,d} = K_{t\perp} \cdot F_{1,d}$$

 $k_{t\perp}$  coeficiente de excentricidad

F<sub>1</sub> solicitación de tracción que actúa sobre la placa WHT PLATE

|             | $\mathbf{k}_{t\perp}$ |
|-------------|-----------------------|
| WHTPLATE440 | 1,00                  |
| WHTPLATE540 | 0,50                  |



La verificación del anclaje está satisfecha si la resistencia al corte de proyecto, calculada teniendo en cuenta los efectos del grupo, es mayor que la solicitación de proyecto:  $R_{bolt \perp,d} \geq F_{bolt \perp,d}$ .

### NOTAS PARA EL PROYECTO SÍSMICO



Considerar cuidadosamente la jerarquía real de las resistencias tanto en referencia al edificio global como dentro del sistema de unión. Experimentalmente la resistencia última del clavo LBA (y del tornillo LBS) es mucho mayor que la resistencia característica evaluada según EN 1995.

Ej. clavo LBA Ø4 x 60 mm:  $R_{v,k}$  = 2,8 - 3,6 kN a partir de pruebas experimentales (variable en función del tipo de madera y del espesor de la placa).

Los datos experimentales derivan de pruebas realizadas en el proyecto de investigación Seismic-Rev y se presentan en el informe científico «Sistemas de conexiones para edificios de madera: investigación experimental para la evaluación de la rigidez, resistencia y ductilidad» (DICAM - Departamento de Ingeniería Civil, del medio ambiente y Mecánica - UniTN).

### NOTAS:

(1) Válidos para los valores de resistencia indicados en la tabla



### PRINCIPIOS GENERALES:

 Los valores característicos respetan la normativa EN 1995-1-1. Los valores de proyecto de los anclajes para hormigón se calculan de acuerdo con sus correspondientes Evaluaciones Técnicas Europeas.

El valor de resistencia de proyecto de la conexión se obtiene a partir de los valores indicados en la tabla de la siguiente manera:

$$R_{d} = min \quad \begin{cases} \frac{R_{k, \ timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, \ steel}}{\gamma_{steel}} \\ R_{d, \ concrete} \end{cases}$$

Los coeficientes  $k_{mod}$ ,  $y_M$  y  $y_{steel}$  se deben tomar de acuerdo con la normativa vigente utilizada para el cálculo.

- Los valores de resistencia lado madera  $R_{1,k\; timber}$  se calculan considerando el número eficaz de acuerdo con el apartado  $8.1\; (EN 1995-1-1)$ 

- En la fase de cálculo se ha considerado una masa volúmica de los elementos de madera equivalente a  $\rho_k$  = 350 kg/m³ y hormigón C25/30 con armadura rala y espesor mínimo indicado en las correspondientes tablas.
- Los valores de resistencia de proyecto lado hormigón se proporcionan para hormigón no fisurado (R $_{1,d\;uncracked}$ ), fisurado (R $_{1,d\;cracked}$ ) y, en caso de verificación sísmica (R $_{1,d\;seismic}$ ), para uso de anclaje químico con barra roscada con clase de acero 5.8.
- Proyecto sísmico en categoría de rendimiento C2 sin requisitos de ductilidad en los anclajes (opción a2) y proyecto elástico conforme con EOTA TR045. Para anclajes químicos, se supone que el espacio anular entre el anclaje y el agujero de la placa está lleno ( $\alpha_{\rm gap}$ =1).
- Los valores de resistencia son válidos para las hipótesis de cálculo definidas en la tabla; para condiciones de frontera diferentes a las de la tabla (por ejemplo, distancias mínimas desde los bordes), el grupo de anclajes lado hormigón puede comprobarse mediante el software de cálculo MyProject en función de las necesidades de diseño.
- El dimensionamiento y la comprobación de los elementos de madera y de hormigón se tienen que calcular aparte.

