TITAN PLATE C CONCRETE

PLACAS PARA FUERZAS DE CORTE

VERSÁTIL

Adecuada para la conexión continua a la subestructura tanto de paneles de CLT (Cross Laminated Timber) como de paneles entramados.

INNOVADORA

Diseñada para fijarse con clavos o tornillos, con fijación parcial o total. También se puede instalar si hay un lecho de mortero.

CALCULADA Y CERTIFICADA

Marcado CE según EN 14545. Disponible en dos versiones. TCP300 con espesor aumentado, optimizada para CLT.

CARACTERÍSTICAS

PECULIARIDAD	uniones de corte en hormigón
ALTURA	200 300 mm
ESPESOR	3,0 4,0 mm
FIJACIONES	LBA, LBS, VIN-FIX, HYB-FIX, AB1, SKR

MATERIAL

Placa perforada bidimensional de acero al carbono con zincado galvanizado.

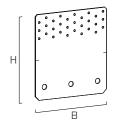
CAMPOS DE APLICACIÓN

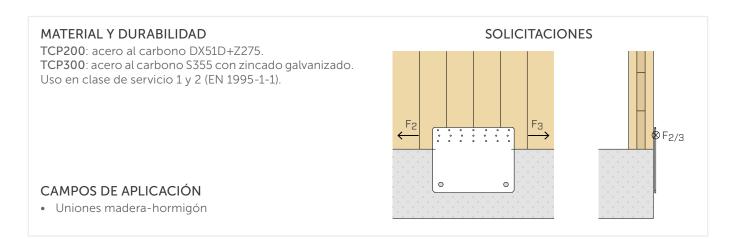
Uniones de corte madera-hormigón para paneles y vigas de madera

- CLT, LVL
- madera maciza y laminada
- estructura de entramado (platform frame)
- paneles de madera

SOBREELEVACIONES

Ideal para realizar uniones planas entre elementos de hormigón o albañilería y paneles de CLT. Realización de conexiones continuas de corte.

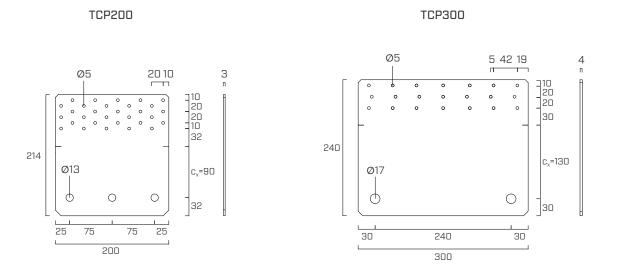

BORDILLO DE HORMIGÓN


Configuraciones de fijación versátiles. Soluciones diseñadas, calculadas, probadas y certificadas con fijación parcial y total y con dirección de las fibras horizontal o vertical.

■ CÓDIGOS Y DIMENSIONES

TITAN PLATE TCP

CÓDIGO	В	Н	agujeros	n _v Ø5	S		unid.
	[mm]	[mm]		[unid.]	[mm]	4 4 4	
TCP200	200	214	Ø13	30	3	•	10
TCP300	300	240	Ø17	21	4	•	5

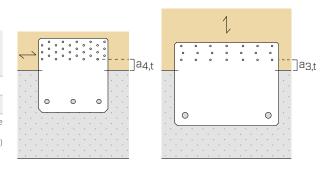


■ PRODUCTOS ADICIONALES - FIJACIONES

tipo	descripción		d	soporte
			[mm]	
LBA	clavo anker	<u> </u>	4	2)))))
LBS	tornillo para placas	()))))))))))))	5	
SKR	anclaje atornillable		12 - 16	
VIN-FIX(*)	anclaje químico		M12 - M16	
HYB-FIX	anclaje químico		M12 - M16	

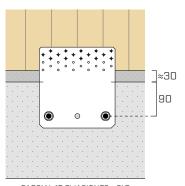
^(*) Para más información, consultar la ficha técnica disponible en el sitio www.rothoblaas.es

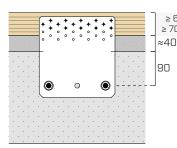
■ GEOMETRÍA



INSTALACIÓN

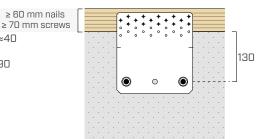
MADERA distancias mín			clavos LBA Ø4	tornillos LBS Ø5	
C/GL	a _{4,t}	[mm]	≥ 20	≥ 25	
CLT	a _{3,t}	[mm]	≥ 28	≥ 30	


- C/GL: distancias mínimas para madera maciza o laminada según la norma EN 1995-1-1 conforme con ETA considerando una masa volúmica de los elementos de madera igual a $\rho_k \le 420 \text{ kg/m}^{\frac{1}{2}}$
- CLT: distancias mínimas para Cross Laminated Timber conforme con ÖNORM EN 1995-1-1 (Annex K) para clavos y con ETA 11/0030 para tornillos

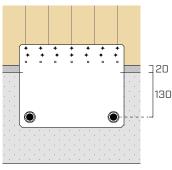

FIJACIÓN PARCIAL

En caso de necesidades de diseño, como solicitaciones de diferente magnitud, o en presencia de una capa de nivelación entre la pared y la superficie de apoyo, es posible adoptar clavados parciales precalculados o bien colocar las placas según sea necesario (por ejemplo, placas rebajadas) prestando atención en respetar las distancias mínimas indicadas en la tabla y en comprobar la resistencia del grupo de anclajes lado hormigón teniendo en cuenta el aumento de la distancia desde el borde (cx). A continuación se proporcionan algunos ejemplos de las posibles configuraciones límite:

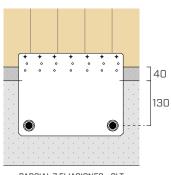
TCP200



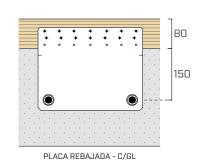
PARCIAL 15 FIJACIONES - CLT

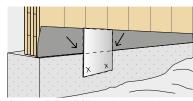

≥ 60 mm nails

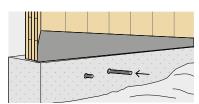
PARCIAL 15 FIJACIONES - C/GL

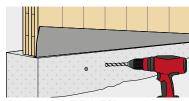


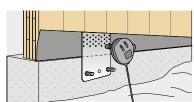
PLACA REBAJADA - C/GL

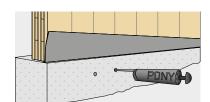


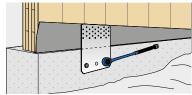

PARCIAL 14 FIJACIONES - CLT


PARCIAL 7 FIJACIONES - CLT

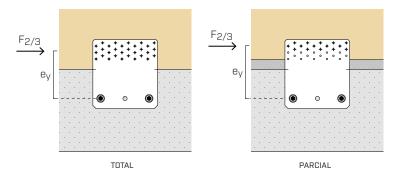

MONTAJE


Colocar TITAN TCP con la línea discontinua en la interfaz madera-hormigón y marcar los agujeros


Inyectar el anclaje y colocar las barras


Quitar la placa TITAN TCP y perforar el hormigón

Colocar la placa TITAN TCP y clavado



Limpiar con esmero los agujeros

Colocación de tuercas y arandelas con un par de apriete apropiado

■ VALORES ESTÁTICOS | UNIÓN DE CORTE | MADERA-HORMIGÓN TCP200

RESISTENCIA LADO MADERA

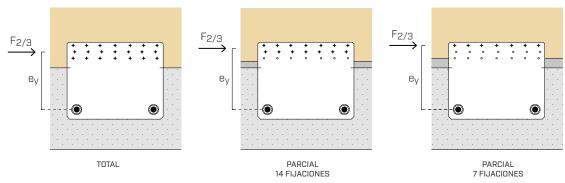
		MADERA					ERO	Н	DRMIGÓN			
configuración	fijaciones agujeros Ø5			R _{2/3,k timber} (1)	R _{2/3,k CLT} ⁽²⁾	R _{2/3,k steel}		fijaciones agujeros Ø13				
sobre madera	tipo	ØxL	n_{ν}					Ø	n _v	e _y ⁽³⁾		
		[mm]	[unid.]	[kN]	[kN]	[kN]	Ysteel	[mm]	[unid.]	[mm]		
• fijación total	clavos LBA	Ø4,0 x 60	30	55,6	70,8	24.0	У м2	N44.2		4.47		
	tornillos LBS	Ø5,0 x 60	30	54,1	69,9	21,8				147		
#!!-	clavos LBA	Ø4,0 x 60	15	27,8	35,4	20,5		00.5		M12	2	160
fijación parcial	tornillos LBS	Ø5,0 x 60	15	27,0	35,0		Үм2			162		

RESISTENCIA LADO HORMIGÓN

Valores de resistencia en el hormigón de algunas de las posibles soluciones de anclaje, según las configuraciones adoptadas para la fijación en madera (e_y). Se supone que la placa se coloca con las muescas de montaje en correspondencia de la interfaz madera-hormigón (distancia anclaje-borde hormigón $c_x = 90$ mm).

			fijación total (e _y = 147 mm)	fijación parcial (e _y = 162 mm)			
configuración en hormigón	fijaciones a	gujeros Ø13	R _{2/3,d} concrete				
	tipo	ØxL					
		[mm]	[kN]	[kN]			
	VIN-FIX 5.8	M12 x 140	12,6	11,5			
	VIIV-FIX 3.8	M12 x 195	13,4	12,2			
• no fisurado	SKR-CE	12 x 90	12,6	11,4			
	AB1	M12 x 100	13,1	11,9			
	VIN FIVE O	M12 x 140	8,9	8,1			
	VIN-FIX 5.8	M12 x 195	9,5	8,7			
• fisurado	SKR-CE	12 x 90	8,9	8,1			
	AB1	M12 x 100	9,2	8,4			
ii-	LIVD FIV 0 0	M12 x 140	6,6	6,1			
• seismic	HYB-FIX 8.8	M12 x 195	8,1	7,4			

NOTAS:


⁽¹⁾ Valores de resistencia para el uso en viga de solera de madera maciza o laminada, calculados considerando el número eficaz de acuerdo con el apartado 8.1 (EN 1995 -1-1).

⁽²⁾ Valores de resistencia para uso en CLT.

⁽³⁾ Excentricidad de cálculo para la comprobación del grupo de anclajes en el hormigón.

■ VALORES ESTÁTICOS | UNIÓN DE CORTE | MADERA-HORMIGÓN

TCP300

RESISTENCIA LADO MADERA

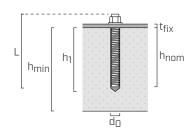
		MADERA					ERO	Н	DRMIGÓN		
configuración	fijac	iones agujeros	Ø5	R _{2/3,k timber} (1)	R _{2/3,k CLT} ⁽²⁾	R _{2/3,k steel}		fijaciones agujeros Ø17			
sobre madera	tipo	ØxL	n _v					Ø	n _v	e _y (3)	
		[mm]	[unid.]	[kN]	[kN]	[kN]	Ysteel	[mm]	[unid.]	[mm]	
filozión total	clavos LBA	Ø4,0 x 60	21	38,4	49,6	64.0	64.0				180
• fijación total	tornillos LBS	Ø5,0 x 60	21	36,9	48,9	64,0	Үм2			100	
• fijación parcial	clavos LBA	Ø4,0 x 60	14	25,6	33,0	60.5	60.5	N416		100	
14 fijaciones	tornillos LBS	Ø5,0 x 60	14	24,6	32,6	60,5	У м2	M16	2	190	
fijación parcial	clavos LBA	Ø4,0 x 60	7	12,8	16,5	F7.6				200	
7 fijaciones	tornillos LBS	Ø5,0 x 60	7	12,3	16,3	57,6	Үм2			200	

RESISTENCIA LADO HORMIGÓN

Valores de resistencia en el hormigón de algunas de las posibles soluciones de anclaje, según las configuraciones adoptadas para la fijación en madera (e_y) . Se supone que la placa se coloca con las muescas de montaje en correspondencia de la interfaz madera-hormigón (distancia anclaje-borde hormigón $c_x = 130 \text{ mm}$).

			fijación total (e _y = 180 mm)	fijación parcial (e _y = 190 mm)	fijación parcial (e _y = 200 mm)			
configuración en hormigón	fijaciones a	gujeros Ø17	R _{2/3,d} concrete					
	tipo	ØxL						
		[mm]	[kN]	[kN]	[kN]			
	VIN-FIX 5.8	M16 x 195	29,6	28,3	27,0			
• no fisurado	SKR-CE	16 x 130	29,7	28,2	26,8			
	AB1	M16 x 145	30,2	28,7	27,3			
	VIN-FIX 5.8	M16 x 195	21,0	20,0	19,1			
• fisurado	SKR-CE	16 x 130	21,0	19,9	19,0			
	AB1	M16 x 145	21,4	20,3	19,3			
. aniamia	LIVD FIV 0 0	M16 x 195	16,8	16,2	15,6			
• seismic	HYB-FIX 8.8	M16 x 245	18,6	17,7	16,9			

PRINCIPIOS GENERALES:


Para los principios generales de cálculo, véase pág. 7

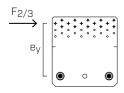
■ PARÁMETROS DE INSTALACIÓN ANCLAJES | TCP200 - TCP300

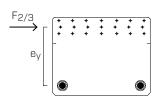
instalación	tipo ancla	tipo anclaje		h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	tipo	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX 5.8	M12140	7	112	112	120	4.4		
	HYB-FIX 8.8	M12 x 140	3	112	112	120	14		
TCP200	SKR-CE	12 x 90	3	64	87	110	10	150	
TCP200	AB1	M12 x 100	3	70	80	85	12		
	VIN-FIX 5.8	M12 v 10E	7	170	170	175	14	200	
	HYB-FIX 8.8	M12 x 195 3	3	170				200	
	VIN-FIX 5.8	M16 x 195	4	164	164	170	18		
	HYB-FIX 8.8	MT0 X 193	4	104		1/0	10		
TCP300	SKR-CE	16 x 130	4	85	126	150	14	200	
	AB1	M16 x 145	4	85	97	105	16		
	HYB-FIX 8.8	M16 x 245	4	210	210	215	18	250	

Barra roscada precortada INA provista de tuerca y arandela: consultar la ficha técnica INA en el sitio www.rothoblaas.es

t_{fix} h_{nom} h_{ef} h₁ d₀ h_{min}

espesor de la placa fijada profundidad de inserción profundidad efectiva del anclaje profundidad mínima del agujero diámetro agujero en hormigón espesor mínimo hormigón


■ COMPROBACIÓN DE LOS ANCLAJES PARA HORMIGÓN | TCP200 - TCP300


La fijación al hormigón mediante anclajes tiene que comprobarse basándose en las fuerzas de solicitación de los anclajes, que dependen de la configuración de fijación lado madera.

La posición y el número de clavos/tornillos determinan el valor de excentricidad e_y , entendido como la distancia entre el baricentro del clavado y el de los anclajes.

El grupo de anclajes debe comprobarse para:

$$V_{Sd,x} = F_{2/3,d}$$

 $M_{Sd,z} = F_{2/3,d} \times e_y$

PRINCIPIOS GENERALES:

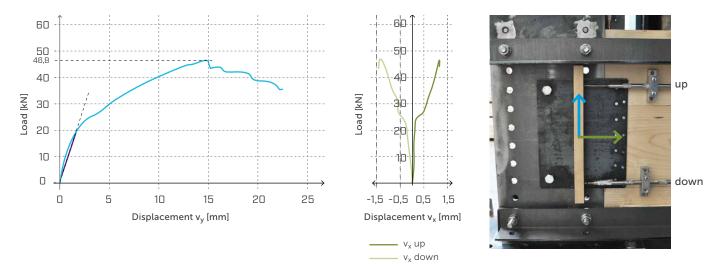
 Los valores característicos respetan la normativa EN 1995-1-1. Los valores de proyecto de los anclajes para hormigón se calculan de acuerdo con sus correspondientes Evaluaciones Técnicas Europeas.

El valor de resistencia de proyecto de la conexión se obtiene a partir de los valores indicados en la tabla de la siguiente manera:

$$R_{d} = min \begin{cases} \frac{(R_{k, timber} \text{ or } R_{k, CLT}) \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases}$$

Los coeficientes $k_{\rm mod},\,y_{\rm M}\,y\,y_{\rm steel}$ se deben tomar de acuerdo con la normativa vigente utilizada para el cálculo.

- En la fase de cálculo se ha considerado una masa volúmica de los elementos de madera equivalente a ρ_k = 350 kg/m³ y hormigón C25/30 con armadura rala y espesor mínimo indicado en la tabla.
- El dimensionamiento y la comprobación de los elementos de madera y de hormigón se tienen que calcular aparte.
- Los valores de resistencia son válidos para las hipótesis de cálculo definidas en la tabla; para condiciones de frontera diferentes a las de la tabla (por ejemplo, distancias mínimas desde los bordes), los anclajes lado hormigón pueden comprobarse mediante el software de cálculo MyProject en función de las necesidades de diseño.
- Proyecto sísmico en categoría de rendimiento C2 sin requisitos de ductilidad en los anclajes (opción a2) y proyecto elástico conforme con EOTA TR045.
 Para anclajes químicos, se supone que el espacio anular entre el anclaje y el agujero de la placa está lleno (agap = 1).



■ INVESTIGACIONES EXPERIMENTALES | TCP300

Para calibrar los modelos numéricos utilizados para proyectar y comprobar la placa TCP300, se ha realizado una campaña experimental en colaboración con el Instituto de BioEconomía (IBE) - San Michele all'Adige.

El sistema de conexión, clavado o atornillado a paneles de CLT, se ha sometido a la solicitación a corte mediante pruebas monótonas con control de desplazamiento y se ha registrado la carga y el desplazamiento en las dos direcciones principales y el modo de colapso. Los resultados obtenidos se han utilizado para validar el modelo analítico de cálculo para la placa TCP300, basado en la hipótesis de que el centro de corte se encuentra en correspondencia con el baricentro de las fijaciones en la madera y que, por lo tanto, los anclajes, que generalmente son el punto débil del sistema, están solicitados no solo por las acciones de corte, sino también por el momento local. El estudio en diferentes configuraciones de fijación (clavos Ø4/tornillos Ø5, clavado total, parcial con 14 conectores y parcial con 7 conectores) muestra que el comportamiento mecánico de la placa está fuertemente influenciado por la rigidez relativa de los conectores en la madera con respecto a la de los anclajes, en pruebas simuladas por atornillado en acero.

En todos los casos se ha observado un modo de rotura a corte de las fijaciones en la madera que no implica rotaciones evidentes de la placa. Solo en algunos casos (clavado total), la rotación no insignificante de la placa implica un aumento de las solicitaciones en las fijaciones en la madera derivadas de una redistribución del momento local con el consiguiente alivio de la solicitación en los anclajes, que representan el punto límite de la resistencia global del sistema.

 ${\it Diagramas fuerza-desplazamiento\ para\ la\ muestra\ TCP300\ con\ clavado\ parcial\ (n.\ 14\ clavos\ LBA\ \varnothing 4\ x\ 60\ mm)}.$

Se necesitan más investigaciones para poder definir un modelo analítico que se pueda aplicar a las diferentes configuraciones de uso de la placa y que permita obtener las rigideces efectivas del sistema y la redistribución de las solicitaciones cuando varían las condiciones de frontera (conectores y materiales básicos).