

 d_1

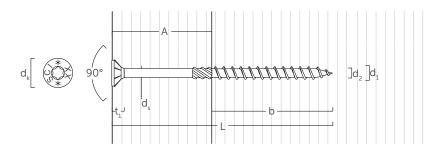
ICS

CS

VIS À TÊTE FRAISÉE

- Pointe à entaille en arrière, filet asymétrique en parapluie spécial, fraise aléseuse allongée et crans coupants sous tête
- Les détails géométriques garantissent à la vis une résistance à la torsion plus élevée et un vissage plus sûr
- Acier inoxydable austénitique A2 | AISI305 pour une excellente résistance à la corrosion. Convient aux milieux agressifs
- Utilisation en extérieur dans des milieux agressifs. Convient pour les classes de service 1-2-3
- Applications sur lames en bois avec densité
 470 kg/m³ (sans pré-perçage) et < 620 kg/m³
 (avec pré-perçage)

MATÉRIAU: acier inoxydable austénitique A2 | AISI305



d ₁ [mm]	d _K [mm]	CODE	L [mm]	b [mm]	A [mm]	pcs.
	10,00	ICS5050	50	24	26	200
5 TX 25		ICS5060	60	30	30	200
		ICS5070	70	35	35	100

GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES

diamètre nominal	d_1	[mm]	5
diamètre tête	d _K	[mm]	10,00
diamètre noyau	d ₂	[mm]	3,40
diamètre sous tête	d _{UK}	[mm]	3,65
épaisseur tête	t ₁	[mm]	4,65
diamètre pré-perçage ⁽¹⁾	d _V	[mm]	3,00
moment plastique caractéristique	$M_{y,k}$	[Nm]	4,37
résistance caractéristique à l'arrachement ⁽²⁾	$f_{ax,k}$	[N/mm²]	17,90
résistance caractéristique à la pénétration de la tête ⁽²⁾	f _{head,k}	[N/mm²]	17,60
résistance caractéristique à la traction	f _{tens,k}	[kN]	5,01

⁽¹⁾Pour les matériaux à densité élevée, il est conseillé d'effectuer un pré-perçage en fonction de l'espèce de bois. ⁽²⁾Densité associée ρ_a = 440 kg/m³.

HOLZ TECHNIC

A épaisseur maximum à

fixer

VALEURS STATIQUES

				CISAILLEMENT	TRAC	TRACTION	
géométrie				bois-bois	extraction du filet ⁽¹⁾	pénétration tête ⁽²⁾	
			A				
d_1	L	b	Α	R _{V,k}	R _{ax,k}	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	
	50	24	26	1,21	1,93	1,58	
5	60	30	30	1,35	2,41	1,58	
	70	35	35	1,35	2,82	1,58	

NOTES

- (1) La résistance axiale à l'extraction du filetage a été évaluée en considérant un angle de 90° entre les fibres et le connecteur et pour une longueur d'enfoncement égale à b.
- (2) La résistance axiale de pénétration de la tête a été calculée sur la base d'un élément en bois.

PRINCIPES GÉNÉRAUX

- Les valeurs caractéristiques sont selon EN 1995:2014.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_d = \frac{R_k \cdot k_{mod}}{v_{rr}}$$

- Les coefficients γ_M et k_{mod} sont établis en fonction de la réglementation en vigueur utilisée pour le calcul. Valeurs de résistance mécanique et géométrie des vis conformément au marquage CE selon EN 14592.
- Pour le calcul, la masse volumique des éléments en bois a été estimée à $\rho_k = 385 \text{ kg/m}^3$.
- Les valeurs ont été calculées en considérant que la partie filetée est complètement insérée dans l'élément en bois.
- Le dimensionnement et la vérification des éléments en bois et en acier doivent être effectués séparément.
 Les résistances caractéristiques au cisaillement sont évaluées pour les vis insérées sans pré-perçage. Si les vis sont insérées avec un pré-perçage, il est possible d'obtenir des valeurs de résistance plus élevées.