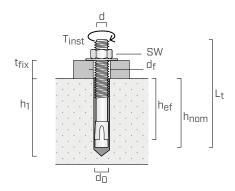
AB1 A4


ANCRAGE À EXPANSION CE1 CHARGES LOURDES EN ACIER INOXYDABLE

- CE option 1 béton fissuré et non fissuré
- Catégorie de performance sismique C1
- Acier inoxydable A4
- Résistance au feu R120
- Avec écrou et rondelle assemblés
- Convient aux matériaux compacts
- Installation traversante
- Expansion par contrôle du couple de serrage

CODES ET DIMENSIONS

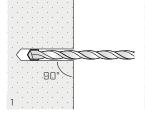
									_	
CODE	$d = d_0$	Lt	t_fix	h _{1,min}	h_{nom}	h _{ef}	d _f	SW	T_{inst}	pcs.
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]	
AB1892A4	MO	92	30	60	50	45	9	13	20	50
AB18112A4	M8	112	50	60	50	45	9	13	20	50
AB11092A4	M10	92	10	75	68	60	12	17	35	50
AB110132A4	M10	132	50	75	68	60	12	17	35	25
AB112118A4	M12	118	20	90	81	70	14	19	70	20
AB116138A4	M16	138	20	110	96	85	18	24	120	10

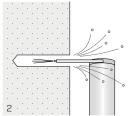
diamètre ancrage d_{0}

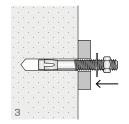
diamètre de perçage dans le support en béton

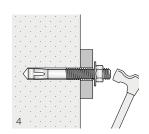
longueur ancrage Lt

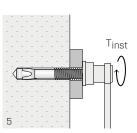
 $t_{\text{fix}} \\$ épaisseur maximum à fixer profondeur minimale de perçage h_1 profondeur d'insertion h_{nom}

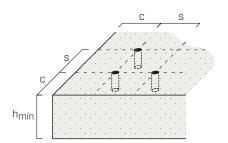

 $h_{\text{ef}} \\$ profondeur d'ancrage effective


diamètre max du trou de passage dans l'élément à fixer d_f


SW dimension clé de serrage


couple de serrage


MONTAGE



INSTALLATION

			AB1 A4				
Entraxes et distances minimales	M8	M10	M12	M16			
Entraxe minimum	s _{min}	[mm]	50	55	60	70	
Entraxe minimum	pour c ≥	[mm]	50	80	90	120	
Distance au bord minimale	c _{min}	[mm]	50	50	55	85	
Distance au bord minimate	pour s ≥	[mm]	50	100	145	150	
Épaisseur minimale du support en béton	h _{min}	[mm]	100	120	140	170	
Entraxes et distances critiques				M10	M12	M16	
Entravo critiquo	s _{cr,N} ⁽¹⁾	[mm]	135	180	210	255	
Entraxe critique	s _{cr,sp} (2)	[mm]	180	240	280	340	
Distance exitings as head	c _{cr,N} ⁽¹⁾	[mm]	68	90	105	128	
Distance critique au bord	c _{cr,sp} ⁽²⁾	[mm]	90	120	140	170	

Pour des entraxes et des distances inférieurs aux valeurs critiques, on aura une diminution des valeurs de résistance en raison des paramètres d'installation.

VALEURS STATIQUES

Valables pour un seul ancrage, sans entraxe, ni distance au bord et pour béton de classe C20/25 de grosse épaisseur et peu armé.

VALEURS CARACTÉRISTIQUES

		BÉ1 NON FI			BÉTON FISSURÉ					
	tracti	traction ⁽³⁾		cisaillement ⁽⁴⁾		traction ⁽³⁾		cisaillement		
tige	$N_{Rk,p}$	γм _р	$V_{Rk,s}$	ΥMs	$N_{Rk,p}$	Yмр	$V_{Rk,s}$	Υм		
tige	[kN]		[kN]		[kN]		[kN]			
M8	9	1,8	11	1,25	5	1,8	11	$\gamma_{Mc} = 1,5^{(5)}$		
M10	16	1,8	17	1,25	9	1,8	17	$\gamma_{Ms} = 1,25^{(4)}$		
M12	20	1,8	25	1,25	12	1,8	25	$\gamma_{Ms} = 1,25^{(4)}$		
M16	35	1,5	47	1,25	20	1,5	47	$\gamma_{Ms} = 1,25^{(4)}$		

facteur multiplicateur pour N _{Rk,p} (6)						
	C25/30	1,04				
	C30/37	1,10				
Ψ_{c}	C40/50	1,20				
	C50/60	1,28				

NOTES:

- $\,^{(1)}\,$ Mode de rupture par cône de béton sous l'effet des charges de traction.
- (2) Mode de rupture par fendage (splitting) sous l'effet des charges de traction.
- (3) Rupture par arrachement (pull-out).
- (4) Rupture de l'acier.
- (5) Rupture par effet levier (pry-out).
- (6) Facteur multiplicateur pour la résistance à la traction (hors rupture de l'acier).

PRINCIPES GÉNÉRAUX :

- Les valeurs caractéristiques sont calculées en accord avec ETA-10/0076.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes : $R_d \!=\! R_k/\gamma_M$
 - Les coefficients γ_M figurent dans le tableau en fonction du mode de rupture et conformément aux certificats de produit.
- Pour le calcul des ancrages à faibles entraxes, proches du bord ou pour une ancrage sur béton d'une classe de résistance supérieure ou d'épaisseur réduite ou à armature dense, veuillez-vous reporter au document ETA.
- Pour la conception des ancrages soumis à des charges sismiques, veuillez vous reporter au document ATE de référence et aux dispositions du Rapport Technique EOTA 045.
- Pour le calcul des ancrages soumis au feu, se référer à l'ETA et au Rapport Technique 020.