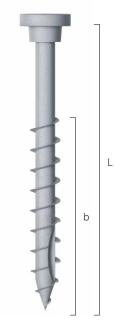
KGL EVO

AC233 | AC257 ESR-4645

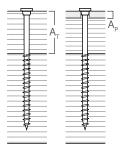
VIS AVEC REVÊTEMENT C4 EVO ET TÊTE TRONCONIQUE

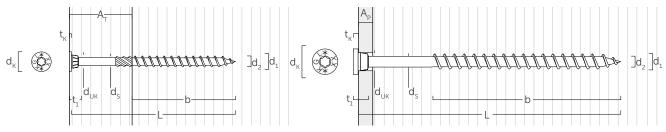
- Revêtement EVO multicouche à base époxy et de flakes en aluminium. Absence de rouille après 1440 heures d'exposition dans un brouillard salin conformément à la norme (ISO 9227)
- Utilisable à l'extérieur dans des zones côtières et industrielles
- Le format de 5,0 mm est idéal pour des assemblages bois - bois, le format de 8 mm est idéal pour des profilés métalliques et pieds de poteau

MATÉRIAU : acier au carbone avec revêtement 20 µm à haute résistance à la corrosion



d ₁ [mm]	d _K [mm]	CODE	L [mm]	b [mm]	A _T [mm]	A _P [mm]	pcs.
5 TX 25	9,65	KGLEVO560	60	35	25	1,0÷10	200
8 TX 40	14,50	HBSPEVO840	40	32	8	1,0÷15	100
		KGLEVO860	60	52	8	1,0÷15	100
		KGLEVO880	80	55	25	1,0÷15	100
		KGLEVO8100	100	75	25	1,0÷15	100




 d_1 KGL EVO Ø8

A épaisseur maximum à fixer

GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES

KGL EVO Ø5

KGL EVO Ø8

diamètre nominal	d_1	[mm]	5	8
diamètre tête	d _K	[mm]	9,65	14,50
diamètre noyau	d ₂	[mm]	3,40	5,40
diamètre tige	d _S	[mm]	3,65	5,80
épaisseur tête	t ₁	[mm]	5,50	8,00
épaisseur de la rondelle	t _K	[mm]	1,00	3,40
diamètre sous tête	d _{UK}	[mm]	6,00	10,00
diamètre pré-perçage ⁽¹⁾	d _V	[mm]	3,00	5,00
moment plastique caractéristique	$M_{y,k}$	[Nm]	5,40	20,10
résistance caractéristique à l'arrachement ⁽²⁾	f _{ax,k}	[N/mm ²]	11,70	11,70
ésistance caractéristique à a pénétration de la tête ⁽²⁾	f _{head,k}	[N/mm²]	10,50	10,50
résistance caractéristique à la traction	f _{tens.k}	[kN]	7,90	20,10

⁽¹⁾Pré-perçage valable pour bois de conifère (softwood).

Pour des applications avec des matériaux différents ou avec une densité élevée, veuillez-vous reporter au document ETA-11/0030.

VALEURS STATIQUES

					CISA	ILLEMENT	TRACTION			
géométrie				bois-bois	acier-bois plaque mince ⁽¹⁾		acier-bois plaque épaisse ⁽²⁾		extraction du filet ⁽³⁾	pénétration tête ⁽⁴⁾
	Å			JS _{PLATE}		S _{PLATE}				
d ₁	L	b	Α	R _{V,k}		R _{V,k}	R _{V,k}		R _{ax,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]		[kN]	[kN]		[kN]	[kN]
5	60	35	25	1,43	S _{PLATE} = 2,5 mm	1,82	S _{PLATE} = 5,0 mm	2,33	2,37	1,13
8	40	32	8	1,18		2,13		3,66	3,47	2,55
	60	52	8	1,18	S _{PLATE} = 4,0 mm	3,31	H H	5,12	5,63	2,55
	80	55	25	2,67	S _{PLA}	4,29	S _{PLATE} = 8,0 mm	5,45	5,96	2,55
	100	75	25	2,67		4,83		5,99	8,12	2,55

NOTES

- (1) Les résistances caractéristiques au cisaillement sont évaluées en considérant le cas de la plaque mince $(S_{PLATE} \le 0.5 \text{ d}_1)$.
 (2) Les résistances caractéristiques au cisaillement sont calculées en considérant le cas d'une plaque épaisse $(S_{PLATE} \ge d_1)$.
 (3) La résistance axiale à l'extraction du filetage a été évaluée en considérant un angle de 90° entre les fibres et le connecteur et pour une longueur d'enfoncement égale à b.
- (4) La résistance axiale de pénétration de la tête a été calculée sur la base d'un élément en bois.

PRINCIPES GÉNÉRAUX

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ETA-11/0030.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- Les coefficients γ_M et k_{mod} sont établis en fonction de la réglementation en vigueur utilisée pour le calcul. Pour les valeurs de résistance mécanique et pour la géométrie des vis, il a été fait référence à ce qui est reporté dans ETA-11/0030.
- Pour le calcul, la masse volumique des éléments en bois a été estimée à $\rho_k = 420 \text{ kg/m}^3$.
- Les valeurs ont été calculées en considérant que la partie filetée est complètement insérée dans l'élément en bois. Le dimensionnement et la vérification des éléments en bois et en acier doivent être effectués séparément.
- Les résistances caractéristiques au cisaillement sont évaluées pour les vis insérées sans pré-perçage. Si les vis sont insérées avec un pré-perçage, il est possible d'obtenir des valeurs de résistance plus élevées.

⁽²⁾ Valable pour bois de conifère (softwood) - densité maximale 440 kg/m³. Densité associée $\rho_a = 350$ kg/m³.