Zn ELECTRO PLATED

CE

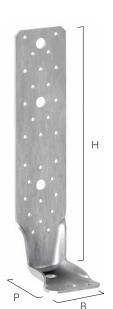
ÉQUERRE RENFORCÉE POUR FORCE DE TRACTION

- La plus classique des équerres pour force de traction : idéale pour la fixation par traction de murs en CLT ou à ossature
- Dimensions et emplacements des trous étudiés pour une application optimale dans tous les cas de figure
- Base renforcée, à fixer avec des vis (sur bois) ou ancrage (sur béton)

HTKR

CODE	B [mm]	P [mm]	H [mm]	s [mm]			pcs.
HTKR9530	65	85	95	3	•	•	25

Nombre de trous :


n _H Ø5	n _H Ø11	n _H Ø14	n _V Ø5	n _V Ø13,5
2	1	1	8	-

CODE	В	Р	Н	S	الالا		pcs.
	[mm]	[mm]	[mm]	[mm]	-//		
HTKR13535	65	85	135	3,5	•	•	25

Nombre de trous :

n _H Ø5	n _H Ø11	n _H Ø14	n _V Ø5	n _V Ø13,5
2	1	1	13	1

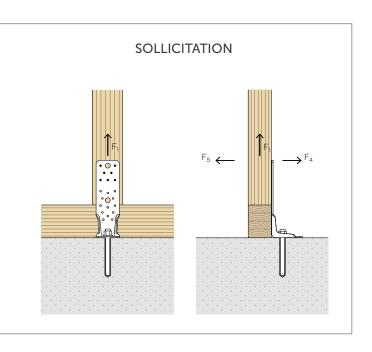
CODE	B [mm]	P [mm]	H [mm]	s [mm]			pcs.
HTKR28535	65	85	287	3,5	•	•	25

Nombre de trous :

n _H Ø5	n _H Ø11	n _H Ø14	n _V Ø5	n _V Ø13,5
2	1	1	29	3

OUTILLAGES

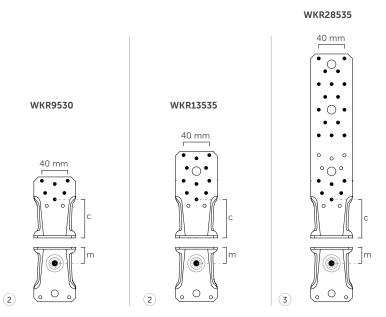
PRODUITS COMPLÉMENTAIRES - FIXATIONS


type	description		d	support
			[mm]	
LBA-HT	pointe Anker		4	
SBL	vis à tête ronde et base plate	()))))))))))))))))))))))))))))	5	2)))]]
VGS	vis tout filet	<u> </u>	11-13	27/11
SHT	rondelle tournée		11	2)))]]
HUS	rondelle tournée		13	2)))]]
HBSPLATE	vis à tête tronconique		10-12	2)))]]
AB1	ancrage mécanique		12	
SKR-CE	ancrage à visser		M12	
V-NEX	ancrage chimique		M12	
HYB-FIX	ancrage chimique		M12	

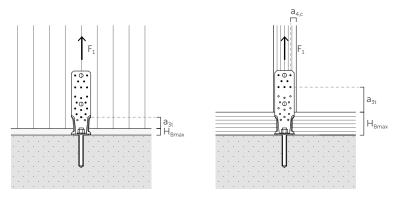
MATÉRIAU ET DURABILITÉ

WKR9530 : acier S250+Z275. WKR13535 | WKR21535 | WKR28535 | WKR53035: acier au carbone S235 électrozingué. Utilisation en classes de service 1 et 2 (EN 1995-1-1)

DOMAINES D'UTILISATION


- Assemblages bois-bois
- Assemblages bois-béton
- Assemblages bois-acier

40 mm 20 mm · () · WKR9530 WKR13535 40 mm 0 40 mm \circ 0 0 0 0 0 0 0 0 1 1 1 2 4


WKR28535

SCHÉMAS DE FIXATION BOIS - BOIS

CODE	configuration	ation fixation trous Ø5		sup	port	
		n _v	С	m		
		pcs.	[mm]	[mm]		
WKR9530	pattern 1	6	60	25	•	-
WKR9550	pattern 2	6	60	23	-	•
WKR13535	pattern 1	11	60	25	•	-
MKKI3333	pattern 2	11	60	25	-	•
	pattern 1	16	160		•	-
WKR28535	pattern 2	22	60	25	•	-
	pattern 3	22	60	25	-	•
	pattern 4	8	160		•	-

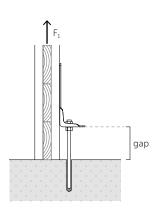
INSTALLATION

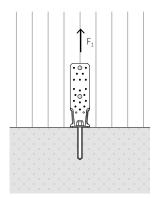
HAUTEUR MAXIMALE DE LA COUCHE INTERMÉDIAIRE HB


		H _{B max} [mm]						
CODE	configuration	С	CLT		GL			
		pointes	vis	pointes	vis			
		LBA-HT Ø4	SBL Ø5	LBA-HT Ø4	SBL Ø5			
WKR9530	pattern 1-2	20	30	-	-			
WKR13535	pattern 1-2	20	30	-	-			
WKR28535	pattern 1-4	120	130	100	85			
WKK28555	pattern 2-3	20	30	-	-			

La hauteur de la couche intermédiaire H_B (mortier de nivellement, seuil ou panne sablière en bois) est déterminée en considérant les prescriptions règlementaires pour les fixations sur bois, indiquées dans le tableau relatif aux distances minimales.

DISTANCES MINIMALES


BOIS distances minimales			pointes LBA-HT Ø4	vis SBL Ø5
CICI	a _{4,c}	[mm]	≥ 20	≥ 25
C/GL	a _{3,t}	[mm]	≥ 60	≥ 75
CLT	a _{4,c}	[mm]	≥ 12	≥ 12,5
	a _{3,t}	[mm]	≥ 40	≥ 30


- C/GL : distances minimales pour bois massif ou lamellé-collé conformes à la norme EN 1995-1-1 conformément à ETA en considérant une masse volumique des éléments en bois ρ_k < 420 kg/m³.
- CLT: distances minimales pour Cross Laminated Timber conformément à ÖNORM EN 1995-1-1 (Annex K) pour pointes et à ETA 11/0030 pour vis.

INSTALLATION AVEC GAP

En présence de force de traction F_1 , il est possible d'installer une équerre surélevée par rapport au plan d'appui. Cela permet par exemple de poser l'équerre également en présence d'une couche intermédiaire H_B (mortier pour lit de pose, poutre de base ou bordure en béton) supérieure à $H_{B\ max}$. Il est conseillé d'installer un contre-écrou sous la bride horizontale, pour éviter qu'un serrage excessif de l'écrou puisse créer une tension sur l'assemblage.

RÉSISTANCE CÔTÉ BOIS

		fi	ixation trous Ø5	R _{1,k timber} ⁽¹⁾		
CODE	configuration	type	Ø x L	n _v		K _{1,ser}
			[mm]	[pcs.]	[kN]	[kN/mm]
WKR9530 pattern 1		pointes LBA-HT	Ø4,0 x 60	6	15,0	
	pattern (1)	vis SBL	Ø5,0 x 50	0	13,3	
WKR13535 pa		pointes LBA-HT	Ø4,0 x 60	11	28,3	R _{1,k timber} /4
	pattern 1	vis SBL	Ø5,0 x 50		24,6	
		pointes LBA-HT	Ø4,0 x 60		37,3	
	pattern 1	vis SBL	Ø5,0 x 50	16	36,0	
WIVDOGGE		pointes LBA-HT	Ø4,0 x 60	22	57,6	
WKR28535	pattern 2	vis SBL	Ø5,0 x 50	22	49,3	
		pointes LBA-HT	Ø4,0 x 60	0	21,3	
	pattern (4)	vis SBL	Ø5,0 x 50	8	18,0	

(1) Une installation avec des pointes et des vis de longueur inférieure à celles proposées dans le tableau est possible. Dans ce cas, les valeurs de capacité portante $R_{1,k \; timber}$ devront être multipliées par le facteur réductif suivant k_F :

- pour pointes

$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,66 \text{ kN}} ; \frac{F_{ax,short,Rk}}{1,28 \text{ kN}} \right\}$$

- pour vis

$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,25 \text{ kN}}, \frac{F_{ax,short,Rk}}{2,63 \text{ kN}} \right\}$$

F_{v,short,Rk} = résistance caractéristique au cisaillement de la pointe ou de la vis $F_{ax,short,Rk}$ = résistance caractéristique à l'extraction de la pointe ou de la vis

- Pour l'installation en présence d'une couche intermédiaire H_B (mortier de nivellement, seuil ou panne sablière en bois) avec pointes sur CLT et à $_{3,t}$ < 60mm, les valeurs de $R_{1,k \text{ timber}}$ dans le tableau devront être multipliées par un coefficient 0,93.
- En présence d'exigences conceptuelles telles que la présence d'une couche intermédiaire H_B (mortier de nivellement, seuil ou panne sablière en bois) supérieure à H_B max, l'installation de l'équerre surélevée par rapport à la surface d'appui (pose avec gap) est autorisée.

RÉSISTANCE CÔTÉ ACIER

CODE	configuration	R _{1,k,bolt,head} ^(*)				
		sans gap	gap	Ysteel		
		[kN]	[kN]			
WKR9530	pattern 1	26	8,3			
WKR13535	pattern 1	26	19			
WKR28535	pattern 1-4	26	-	YM2		
	pattern 2	20	19			

^(*) Les valeurs du tableau se réfèrent à une rupture par poinçonnement du connecteur dans la bride horizontale.

RÉSISTANCE CÔTÉ BÉTON

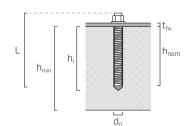
						R _{1,d c}	oncrete		
CODE	configuration	fixation tro	ous Ø14		sans	gap		ga	ар
	sur béton	type	ØxL	pattern 1	pattern 2	pattern 3	pattern 4	pattern 1	pattern 2
			[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
		V-NEX 5.8 ⁽¹⁾	M12 x 195	26,6	-	-	-	28,0	-
	• non fissuré	SKR-CE	12 x 90	10,5	-	-	-	-	-
		AB1 ⁽²⁾	M12 x 100	17,4	-	-	-	[kN] 28,0 20,5 28,0 - 15,4 19,0	-
WKR9530		V-NEX 5.8	M12 x 195	19,5	-	-	-	20,5	-
WKR13535	• fissuré	HYB-FIX 5.8 ⁽³⁾	M12 x 195	26,7	-	-	-	28,0	-
		AB1	M12 x 100	10,2	-	-	-	-	-
		HYB-FIX 8.8	M12 x 195	14,6	-	-	-	15,4	-
	parasismique	HTB-FIX 6.6	M12 x 245	18,1	-	-	-	19,0	-
		V-NEX 5.8	M12 x 195	19,3	25,4	-	19,3	-	28,0
	• non fissuré	SKR-CE	12 x 90	7,6	10,1	-	7,6	-	-
		AB1	M12 x 100	12,6	16,6	-	12,6	-	-
WKR28535		V-NEX 5.8	M12 x 195	14,1	18,6	-	14,1	-	20,5
WKK28555	• fissuré	HYB-FIX 5.8	M12 x 195	19,3	25,5	-	19,3	-	28,0
		AB1	M12 x 100	7,4	9,7	-	7,4	-	-
	a paracicmique	HYB-FIX 8.8	M12 x 195	10,6	14,0	-	10,6	-	15,4
	parasismique		M12 x 245	13,1	17,3	-	13,1	-	19,0

NOTES

 $^{^{(1)}}$ Ancrage chimique V-NEX en accord avec l'ETA 20/0363.

 $^{^{(2)}}$ Ancrage mécanique AB1 en accord avec l'ETA 17/0481.

⁽³⁾ Ancrage chimique HYB-FIX en accord avec l'ETA 20/1285. L'installation avec gap est à réaliser uniquement avec des ancrages chimiques et une tige filetée prédécoupée INA ou MGS à couper sur mesure.


PARAMÈTRES DE POSE DES ANCRAGES⁽¹⁾

type d'	type d'ancrage		h _{nom}	h ₁	d ₀	h _{min}
type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]
V-NEX 5.8	M12 x 195	170	170	175	14	200
HYB-FIX 5.8	M12 x 195	170	170	175	14	200
HYB-FIX 8.8	M12 x 195	170	170	175		200
HTB-FIX 8.8	M12 x 245	210	210	215		250
SKR-CE	12 x 90	64	87	110	10	200
AB1	M12 x 100	70	80	85	14	200

Tige filetée prédécoupée INA classe 5.8 / 8.8 avec écrou et rondelle.

Pour plus d'informations, se référer à la fiche technique disponible sur le site www.rothoblaas.fr.

Les valeurs de résistance côté béton ont été calculées en adoptant une épaisseur t_{fix} de 3 mm pour toutes les équerres.

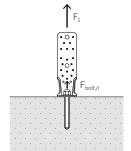
 t_{fix} h_{nom} $h_{\text{ef}} \\$ h_1 $d_0 \\$ h_{min}

épaisseur de la plaque fixée profondeur d'insertion profondeur d'ancrage effective profondeur minimale de perçage diamètre du trou dans le béton épaisseur minimale du béton

DIMENSIONNEMENT D'ANCRAGES DIFFÉRENTS

La fixation au béton par des systèmes d'ancrage différents de ceux figurant dans les tableaux doit être vérifiée en fonction de l'effort sollicitant les ancrages, qui se calcule à l'aide des coefficients k_{t//}. La force axiale de traction agissant sur chaque ancrage s'obtient à partir de la formule suivante:

$$F_{bolt//,d} = k_{t//} \cdot F_{1,d}$$


coefficient d'excentricité $k_{t/\!/}$

 $F_{1,d}$ contrainte de traction agissant sur l'équerre WKR

La vérification de l'ancrage sera respectée si la résistance de calcul aux charges de traction, calculée en prenant compte des effets de bord, est supérieure à la contrainte de conception : $R_{bolt /\!/,d} \ge F_{bolt /\!/,d}$.

INSTALLATION SANS GAP

CODE	configuration	k _{t//}
WKR9530	pattern 1-2	1,05
WKR13535	pattern 1-2	1,05
WKR28535	pattern 2-3	1,10
WKK26333	pattern 1-4	1,45

INSTALLATION AVEC GAP

CODE	configuration	k _{t//}
WKR9530	pattern 1	
WKR13535	pattern 1	1,00
WKR28535	pattern 2	

⁽¹⁾ Valables pour les valeurs de résistance tabulées.

VIS POUR MÉTAL

DONNÉES TECHNIQUES

Classe de service = 1

Durée de la charge = instantanée

BOIS-BÉTON | INSTALLATION AVEC GAP

CONNECTEUR

WKR13535

Configuration = Pattern 1 avec gap

Fixation sur bois = pointes LBA-HT 4 x 60 mm

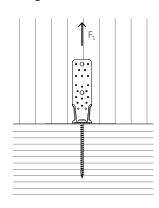
CHOIX DE L'ANCRAGE

Béton non fissuré

Ancrage V-NEX M12 x 195 (cl. acier 5.8)

$$R_{1,d} = min \begin{cases} \frac{R_{1,k \ timber} \cdot k_{mod}}{\gamma_{M}} &= 23,95 \ [kN] \\ \frac{R_{1,k, bolt, head}}{\gamma_{M2}} &= 15,2 \ [kN] \\ R_{1,d \ concrete} &= 28,0 \ [kN] \end{cases}$$

EN 1995:2014


 $k_{mod} = 1.1$ $\gamma_M = 1.3$

 $\gamma_{M2} = 1.25$ $R_{1,k \text{ timber}} = 28.3 \text{ kN}$

 $R_{1,k,bolt,head} = 19,0 \text{ kN}$ $R_{1,d \text{ concrete}} = 28,0 \text{ kN}$

 $R_{1,d} = 15,2 \text{ kN}$

VALEURS STATIQUES | ASSEMBLAGE EN TRACTION F₁ | BOIS-BOIS

RÉSISTANCE CÔTÉ BOIS

CODE	configuration	f	ixation trous Ø5	R _{1,k timber} ⁽¹⁾		
		type	ØxL	n _v		K _{1,ser}
			[mm]	[pcs.]	[kN]	[kN/mm]
		pointes LBA-HT	Ø4,0 x 60		15,0	
WKR9530	pattern 2	vis SBL	Ø5,0 x 50	- 6	13,3	
W//D47575		pointes LBA-HT	Ø4,0 x 60	4.4	28,3	D //
WKR13535	pattern 2	vis SBL	Ø5,0 x 50	- 11	24,6	R _{1,k timber} /4
WKR28535		pointes LBA-HT	Ø4,0 x 60		57,6	
	pattern 3	vis SBL	Ø5,0 x 50	- 22	49,3	

- (1) Une installation avec des pointes et des vis de longueur inférieure à celles proposées dans le tableau est possible. Dans ce cas, les valeurs de capacité portante R_{1,k} timber devront être multipliées par le facteur réductif suivant k_F
 - pour pointes

- pour pointes
$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,66 \text{ kN}}; \frac{F_{ax,short,Rk}}{1,28 \text{ kN}} \right\}$$

- pour vis

$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,25 \text{ kN}}; \frac{F_{ax,short,Rk}}{2,63 \text{ kN}} \right\}$$

 $F_{v,short,Rk}$ = résistance caractéristique au cisaillement de la pointe ou de la vis $F_{ax,short,Rk}$ = résistance caractéristique à l'extraction de la pointe ou de la vis

RÉSISTANCE CÔTÉ ACIER

connecteur	WKR	R _{1,k screw,head} (*)		
			Ysteel	
		[kN]		
VGS Ø11 + SHT10	WKR9530 / WKR13535 / WKR285135	D		
VGS Ø13 + HUS12	MKKA220 \ MKKT2222 \ MKK5Q2T22	R _{tens,k}		
	WKR9530	20,0		
HBS PLATE Ø10	WKR13535 / WKR285135	21,0	Ум2	
HBS PLATE Ø12	WKR9530	27,0		
HBS PLATE Ø12	WKR13535 / WKR285135	29,0		

^(*) Les valeurs du tableau se réfèrent à une rupture par poinçonnement du connecteur dans la bride horizontale.

RÉSISTANCE CÔTÉ ANCRAGE

Valeurs de résistance de certaines des solutions de fixation possibles.

CODE	configuration		fixation trous Ø14				
	k _{t//}		type ⁽¹⁾	R _{1,k,screw,ax}			
				[kN]			
WKR9530	pattern 2	1,05	HBSP Ø10 x 180 HBSP Ø10 x 140 HBSP Ø12 x 200	18,9 13,9			
WKR13535	pattern 2	1,05	HBSP Ø12 x 140 VGS Ø11 x 200 + SHT10	24,2 16,7 26,4			
WKR28535	pattern 3	1,10	VGS Ø11 x 150 + SHT10 VGS Ø13 x 200 + HUS12 VGS Ø13 x 150 + HUS12	19,5 31,2 23,0			

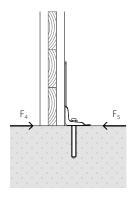
EXEMPLES DE CALCUL : DÉTERMINATION DE LA RÉSISTANCE R_{1d}

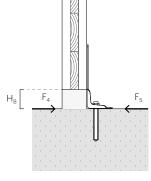
BOIS-BOIS

DONNÉES TECHNIQUES
Classe de service = 1
Durée de la charge = instantanée
CONNECTEUR
WKR9530
Configuration = Pattern 2
Fixation sur bois = pointes LBA-HT 4 x 60 mm
CHOIX DE LA VIS
HBS PLATE = 10 x 140 mm
Pré-perçage = non

$$R_{1,d} = min \begin{cases} \frac{R_{1,k \text{ timber}} \cdot k_{mod}}{\gamma_{M}} &= 12.7 \text{ [kN]} \\ \frac{R_{1,k,\text{screw,head}}}{\gamma_{M2}} &= 16.0 \text{ [kN]} \\ \frac{R_{1,k,\text{screw,ax}} \cdot k_{mod}}{k_{t//}} \cdot \frac{k_{mod}}{\gamma_{M}} &= 11.2 \text{ [kN]} \end{cases}$$

EN 1995:2014


 $k_{mod} = 1.1$ $\gamma_M = 1.3$ $\gamma_{M2} = 1.25$ $k_{t//} = 1.05$ $R_{1,k, timber} = 15.0 \text{ kN}$ $R_{1,k,screw,head} = 20,0 \text{ kN}$ $R_{1,k, \text{ screw,ax}} = 13,9 \text{ kN}$


 $R_{1,d} = 11,2 \text{ kN}$

NOTES:

 $^{^{(1)}}$ En présence d'exigences conceptuelles telles que des sollicitations F_1 de différente amplitude, ou en fonction de l'épaisseur de plancher, il est possible d'utiliser des vis VGS Ø11 e Ø13 avec rondelle SHT10 et HUS12 et des vis HBS PLATE Ø10 et Ø12 d'une longueur différente que celle proposée dans le tableau.

VALEURS STATIQUES | ASSEMBLAGE EN CISAILLEMENT ${\sf F_4}{\sf -F_5}$ | BOIS - BÉTON

 $H_B = 0$

 $0 < H_B \le H_{Bmax}$

		fixat	ion trous Ø5		H _B	= 0	$0 < H_B \le H_{Bmax}$		l _{BL}
CODE	configuration	type	ØxL	n _v	R _{4,k timber} (1)	R _{5,k timber} (1)	R _{4,k timber} (1)	R _{5,k timber} ⁽¹⁾	
			[mm]	[pcs.]	[kN]	[kN]	[kN]	[kN]	[mm]
WKR9530 pattern 1	pointes LBA-HT	Ø4,0 x 60		14,7	2,6	11,3	2,6	70.0	
	pattern 1	vis SBL	Ø5,0 x 50	6	14,1	3,4	10,7	3,4	70,0
		pointes LBA-HT	Ø4,0 x 60	11	18,3	2,6	14,9	2,6	70,0
WKR13535	pattern 1	vis SBL	Ø5,0 x 50	11	17,2	3,6	13,8	3,6	
pattern ① WKR28535	pointes LBA-HT	Ø4,0 x 60	1.0	21,7	1,0	13,0	0,9	4600	
	vis SBL	Ø5,0 x 50	16	20,0	1,0	11,3	0,9	160,0	
		pointes LBA-HT	Ø4,0 x 60	22	25,6	2,6	22,3	2,6	70.0
	pattern 2	vis SBL	Ø5,0 x 50	- 22	23,4	3,6	20,0	3,6	70,0

NOTES :

(1) Une installation avec des pointes et des vis de longueur inférieure à celles proposées dans le tableau est possible. Dans ce cas, les valeurs de capacité portante $R_{4,k \; timber}$ et $R_{5,k \; timber}$ devront être multipliées par le facteur réductif suivant k_F :

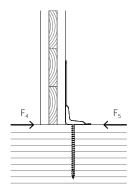
- pour pointes

$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,66 \text{ kN}}, \frac{F_{ax,short,Rk}}{1,28 \text{ kN}} \right\}$$

- pour vis

$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,25 \text{ kN}}, \frac{F_{ax,short,Rk}}{2,63 \text{ kN}} \right\}$$

 $F_{v,short,Rk}$ = résistance caractéristique au cisaillement de la pointe ou de la vis $F_{ax,short,Rk}$ = résistance caractéristique à l'extraction de la pointe ou de la vis


En cas de sollicitation $F_{5,Ed}$, il est nécessaire de vérifier l'action simultanée de cisaillement sur l'ancrage $F_{v,Ed}$ et de la composante d'extraction supplémentaire $F_{ax,Ed}$:

$$F_{ax,Ed} = \frac{F_{5,Ed} \cdot l_{BL}}{25 \text{ mm}}$$

 l_{BL} = distance entre la dernière rangée d'au mois deux connecteurs et le plan d'appui

- La résistance $R_{4,k\,timber}$ est limitée par la résistance latérale $R_{v,k}$ du connecteur de base.
- Pour les valeurs de rigidité K_{4, ser} en configuration bois-béton, se référer aux indications fournies dans ETA-22/0089.

VALEURS STATIQUES | ASSEMBLAGE EN CISAILLEMENT ${\sf F_4}{\sf -F_5}$ | BOIS - BOIS

		fix	ation trous Ø5				
CODE	configuration	type	ØxL	n _v	R _{4,k timber} (1)	R _{5,k timber} (1)	l _{BL}
			[mm]	[pcs.]	[kN]	[kN]	[mm]
144/20570	pattern 2	pointes LBA-HT	Ø4,0 x 60	6	14,7	2,6	70.0
WKR9530		vis SBL	Ø5,0 x 50		14,1	3,4	
WKR13535 pattern		pointes LBA-HT	Ø4,0 x 60	11	18,3	2,6	70,0
	pattern (2)	vis SBL	Ø5,0 x 50	11	17,2	3,6	

NOTES:

 $^{(1)}$ Une installation avec des pointes et des vis de longueur inférieure à celles proposées dans le tableau est possible. Dans ce cas, les valeurs de capacité portante $R_{4,k}$ timber et R_{5,k timber} devront être multipliées par le facteur réductif suivant k_F:

- pour pointes

$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,66 \text{ kN}}, \frac{F_{ax,short,Rk}}{1,28 \text{ kN}} \right\}$$

- pour vis

$$k_F = min \left\{ \frac{F_{v,short,Rk}}{2,25 \text{ kN}}; \frac{F_{ax,short,Rk}}{2,63 \text{ kN}} \right\}$$

 $F_{v.short,Rk}$ = résistance caractéristique au cisaillement de la pointe ou de la vis $F_{ax.short,Rk}$ = résistance caractéristique à l'extraction de la pointe ou de la vis

• En cas de sollicitation $F_{5,Ed}$, il est nécessaire de vérifier l'action simultanée de cisaillement sur l'ancrage $F_{v,Ed}$ et de la composante d'extraction supplémentaire $F_{ax,Ed}$:

$$F_{ax,Ed} = \frac{F_{5,Ed} \cdot l_{BL}}{25 \text{ mm}}$$

 l_{BL} = distance entre la dernière rangée d'au mois deux connecteurs et le plan d'appui

- La résistance $R_{4,k \; timber}$ est limitée par la résistance latérale $R_{v,k}$ du connecteur de base.
- Pour les valeurs de rigidité K_{4, ser} en configuration bois-bois, se référer aux indications fournies dans ETA-22/0089.

PRINCIPES GÉNÉRAUX :

• Les valeurs caractéristiques sont celles de la norme EN 1995-1-1 conformément à ETA-22/0089. Les valeurs nominales des ancrages pour béton sont calculées conformément aux évaluations techniques européennes respectives. Les valeurs de résistance de calcul du système de connexion sont obtenues à partir des valeurs tabulées suivantes :

- installation bois-béton

$$R_{d} = min \begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k \, bolt, \, head}}{\gamma_{M2}} \\ R_{d, \, concrete} \end{cases}$$

- installation bois-bois

$$R_{d} = min \ \begin{cases} \frac{R_{k, \ timber} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{k, screw, ax}}{k_{t/\prime}} \cdot \frac{k_{mod}}{\gamma_{M}} \\ \frac{R_{k, screw, head}}{\gamma_{M2}} \end{cases}$$

- Le dimensionnement et la vérification des éléments en bois et béton doivent être effectués séparément. Il est conseillé de vérifier l'absence de ruptures fragiles avant d'atteindre la résistance de la connexion.
- Les éléments structurels en bois auxquels sont fixés les systèmes de connexion doivent être liés à la rotation.
- Pour le calcul, la masse volumique des éléments en bois a été estimée à ρ_k = 350 kg/m³. Pour des valeurs de ρ_k supérieures, les résistances côté bois peuvent être converties par la valeur k_{dens}:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5} \text{ for } 350 \text{ kg/m}^3 \le \rho_k \le 420 \text{ kg/m}^3$$

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5}$$
 for LVL with $\rho_k \le 500 \text{ kg/m}^3$

- Pour le calcul, une classe de résistance du béton C25/30 peu armé, sans entraxes et sans distances du bord et avec une épaisseur minimale indiquée dans les tableaux des paramètres d'installation des ancrages utilisés, est considérée.
- La conception sismique des ancrages a été effectuée en catégorie de performances C2, sans exigences de ductilité sur les ancrages (option a2) avec conception élastique conformément à EN 1992-4, et α_{sus} = 0,6. Pour des ancrages chimiques, il est supposé que l'espace annulaire entre l'ancrage et le trou de la plaque soit rempli (α_{gap} =1).