ELEMENTOS PARA COBERTURA

GUIFAMENIO

CLC

 b_1

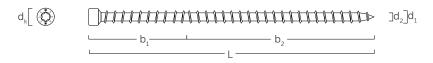
 b_2

CONECTOR MADEIRA-BETÃO

 CTC é o conector para lajes colaborantes madeira-betão

- As lajes mistas madeira-betão são uma solução eficaz para alcançar um elevado desempenho em termos de resistência e rigidez, tanto em lajes existentes, como em novas
- A contra-rosca sub-cabeça serve de indicador de aplicação durante a instalação e gera um aumento da vedação do conector dentro do betão
- Sistema certificado, auto-perfurante, reversível, rápido, a seco e não invasivo. Ideal para a recuperação de lajes

MATERIAL: aço carbónico com zincagem galvânica branca



d ₁ [mm]	d _K [mm]	CÓDIGO	L [mm]	b ₁ [mm]	b ₂ [mm]	pçs
8	10.50	CLC8160	160	50	110	100
TX 40	10,50	CLC8240	240	50	190	100

GEOMETRIA E CARACTERÍSTICAS MECÂNICAS

diâmetro nominal		d_1	[mm]	8
diâmetro da cabeça		d _K	[mm]	10,50
diâmetro do núcleo		d ₂	[mm]	5,20
diâmetro do pré-furo		d _V	[mm]	5,00
momento característico do ponto de rutura de tensão		$M_{y,k}$	[Nm]	28,00
parâmetro característico de resistência à extração(1)		f _{ax,k}	[N/mm ²]	11,30
resistência característica à tração		$f_{\text{tens,k}}$	[kN]	25,00
	conectores cruzados a 45°		[kN]	10,00
resistência característica	conectores paralelos a 45° com lâmina fonoisolante ⁽²⁾	_	[kN]	10,00
à extração - betão	conectores paralelos a 30°	F _{ax,concrete,Rk}	[kN]	10,00
	conectores paralelos a 45° sem lâmina fonoisolante		[kN]	15,00
coeficiente de atrito ⁽³⁾				0,25

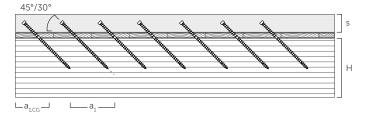
⁽¹⁾densidade associada $\rho_a = 350 \text{ kg/m}^3$.

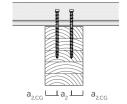
PRINCÍPIOS GERAIS

- Para os valores de resistência mecânica e para a geometria dos parafusos, fez-se referência ao que consta da ETA-19/0244.
- A resistência de projecto ao corte do conector é a mínima entre a resistência de projecto do lado da madeira $(R_{ax,d})$, resistência de projecto do lado do betão $(R_{ax,correte,d})$ e a resistência de projecto do lado do aço $(R_{tens,d})$.

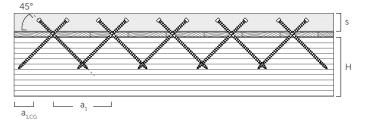
⁽²⁾Lâmina sob betonilha resiliente em betume e feltro de poliéster tipo SILENT FLOOR.

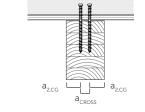
 $^{^{(3)}}$ O componente do atrito μ só pode ser considerado nos arranjos com parafusos inclinados (30 ° e 45 °) e na ausência da lâmina fonoisolante.


MÓDULO DE DESLIZAMENTO K_{SER}


	K _{ser} [N/mm]		
disposição conectores com lâmina fonoisolante ⁽¹⁾		disposição conectores sem lâmina fonoisolante ⁽¹⁾		
45° paralelos	19 l _{ef}	45° 48 lef	56 l _{ef}	
45° paratetos		48 ter		
30° C	48 l _{ef}	30° C	80 l _{ef}	
45° 10 45°	85 l _{ef}	45° 45°	85 l _{ef}	
45° cruzados		45° cruzados		

⁽¹⁾ Lâmina sob betonilha resiliente em betume e feltro de poliéster tipo SILENT FLOOR.


DISTÂNCIAS MÍNIMAS PARA CONECTORES CARREGADOS AXIALMENTE⁽¹⁾


DISPOSIÇÃO PARALELA

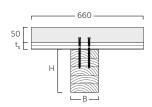
DISPOSIÇÃO CRUZADA

d_{i}	[mm]	8
a ₁	[mm]	130·sin(α)
a ₂	[mm]	40
a _{1,CG}	[mm]	85
a _{2,CG}	[mm]	35
a _{CROSS}	[mm]	12

NOTAS

- $^{(1)}$ As distâncias mínimas para conectores carregados axialmente são de acordo a ETA-19/0244. s espessura laje de fundação em betão (50 mm \leq s \leq 0,7 H) H altura viga de madeira (H \geq 100 mm)

O módulo de deslizamento K_{ser} é considerado relativo a um simples conector inclinado ou um par de conectores cruzados sujeitos a uma força paralela ao plano de deslizamento.


 $l_{\rm ef}$ = profundidade de penetração do conector CTC no elemento em madeira em milímetros.

VALORES ESTÁTICOS

NORMA DE CÁLCULO NTC 2018 - UNI EN 1995:2014

PRÉ-DIMENSIONAMENTO DE CONECTORES CLC PARA LAJES COMPOSTAS MADEIRA-BETÃO

HIPÓTESES DE CÁLCULO				
Interstício vigas	660 mm			
Espessura da laje de betão C20/25	50 mm			
Limite de seta	w _{ist} = l/400			
Limite de Seta	$W_{net,fin} = 1/250$			
Norma de cálculo	NTC 2018 - UNI EN 1995:2014			

CARGAS	
peso próprio (g _{k1})	viga de madeira + soalho + laje de betão
carga permanente não estrutural (g _{k2})	2 kN/m²
sobrecarga variável (q _k)	2 kN/m²
duração da carga variável	média

secç	ão da viga BxH [mm]	folga [m]							
		3	3,5	4	4,5	5	5,5	6	
	n.° conectores por viga	8	26	44	72				
120 x 160	passo[mm]	400/400	100/200	150/250 ⁽¹⁾	120/120(1)	-	-	-	
	n° de conectores/m²	4,0	11,3	16,7	24,2				
	n.° conectores por viga		12	28	44	68	_	-	
120 x 200	passo[mm]	-	300/300	100/250	150/300 ⁽¹⁾	100/250 ⁽¹⁾			
	n° de conectores/m²		5,2	10,6	14,8	20,6			
	n.° conectores por viga		-	26	44	64	80		
140 x 200	passo[mm]	-		100/300	100/100	120/240(1)	100/200(1)	-	
	n° de conectores/m²			9,8	14,8	19,4	22,0		
	n.° conectores por viga				24	42	72	84	
140 x 240	passo[mm]	-	-	-	180/180	100/150	150/150 ⁽¹⁾	100/250(1	
	n° de conectores/m²				8,1	12,7	19,8	21,2	

CONECTOR CLC Ø8 x 160 - madeira lamelada GL 24h (EN 14080:2013) com controlo de produção contínua Espessura do soalho t_s = 21 mm

``				
`\	``````````````````````````````````````			
45° (A A A A A A A A A A A A A A A A A A A			
		No.		
			M.	=
				_

Aplicação a 45° sem lâmina fonoisolante

CONECTOR CLC Ø8 x 160 - madeira lamelar GL24h (EN 14080:2013) Espessura do soalho $t_{\rm S}$ = 21 mm

secção da viga BxH [mm]		folga [m]							
		3	3,5	4	4,5	5	5,5	6	
	n.° conectores por viga	16	28	52	88				
120 x 160	passo[mm]	400/400	250/250	150/150	100/100	-	-	-	
	n° de conectores/m²	8,1	12,12	19,70	29,63				
120 x 200	n.° conectores por viga		18	32	54	74			
	passo[mm]	-	400/400	250/250	120/240	100/200 22,42	-	-	
	n° de conectores/m²		7,79	12,12	18,18				
	n.º conectores por viga			26	44	66	90		
140 x 200	passo[mm]	-	-	300/300	150/300	120/200	100/150	_	
	n° de conectores/m²			9,85	14,81	20,00	24,79		
140 x 240	n.º conectores por viga				26	50	68	118	
	passo[mm]	-	-	-	350/350	200/200	120/240	100/100	
	n° de conectores/m²				8,75	15,15	18,73	29,80	

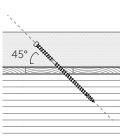
45° 45°

Aplicação cruzada a 45° com ou sem lâmina fonoisolante.

NOTAS

(1) Conectores dispostos em duas filas.

Para configurações de cálculo diferentes, está disponível gratuitamente a folha de cálculo CLC Calculator (www.holztechnic.com).

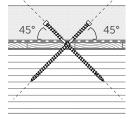

VALORES ESTÁTICOS

NORMA DE CÁLCULO NTC 2018 - UNI EN 1995:2014

CONECTOR CLC Ø8 x 240 - madeira lamelar GL24h (EN 14080:2013)

Espessura do soalho $t_{\rm S}$ = 21 mm

secçã	ío da viga BxH [mm]	folga [m]						
		3	3,5	4	4,5	5	5,5	6
	n.° conectores por viga	8	14	24	34			
120 x 160	passo[mm]	500/500	250/250	120/300	100/200	-	-	-
	n° de conectores/m²	4,0	6,1	9,1	11,4			
	n.° conectores por viga		8	16	24	34	46	
120 x 200	passo[mm]	-	500/500	250/250	150/200	120/200	100/150	-
	n° de conectores/m²		3,5	6,1	8,1	10,3	12,7	
	n.° conectores por viga			14	22	32	46	60
140 x 200	passo[mm]	-	-	300/300	150/300	120/240	100/150	100/10
	n° de conectores/m²			5,3	7,4	9,7	12,7	15,2
	n.° conectores por viga				16	26	34	44
140 x 240	passo[mm]	-	_	_	300/300	150/300	120/250	100/20
	n° de conectores/m²				5,4	7,9	9,4	11,1



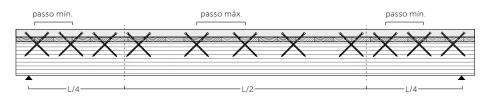
Aplicação a 45° sem lâmina fonoisolante

CONECTOR CLC Ø8 x 240 - madeira lamelar GL24h (EN 14080:2013)

Espessura do soalho t_s = 21 mm

secção da viga BxH [mm]		folga [m]							
		3	3,5	4	4,5	5	5,5	6	
	n.º conectores por viga	14	26	48	74				
120 x 160	passo[mm]	500/500	200/400	120/240	100/150	-	-	-	
	n° de conectores/m²	7,1	11,3	18,2	24,9				
	n.° conectores por viga	_	14	30	52	68	_	-	
120 x 200	passo[mm]		500/500	200/400	120/300	100/250			
	n° de conectores/m²		6,1	11,4	17,5	20,6			
	n.° conectores por viga			26	46	68	90		
140 x 200	passo[mm]	-	-	300/300	150/250	100/250	120/120	-	
	n° de conectores/m²			9,8	15,5	20,6	24,8		
	n.° conectores por viga				36	50	74	88	
140 x 240	passo[mm]	-	-	-	250/250	200/200	100/250	100/20	
	n° de conectores/m²				12.1	15.2	20.4	22.2	

Aplicação cruzada a 45° com ou sem lâmina fonoisolante.

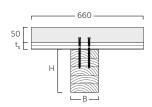

NOTAS

(1) Conectores dispostos em duas filas.

Para configurações de cálculo diferentes, está disponível gratuitamente a folha de cálculo CLC Calculator (www.holztechnic.com).

PRINCÍPIOS GERAIS

• Entende-se por passo os valores do espaçamento mínimo e máximo em que os conectores são posicionados, respetivamente nos lados (L/4 - espaçamento mínimo) e na parte central da viga (L/2 - espaçamento máximo)

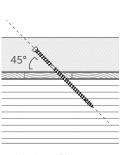


VALORES ESTÁTICOS

NORMA DE CÁLCULO
EN 1995:2014

PRÉ-DIMENSIONAMENTO DE CONECTORES CLC PARA LAJES COMPOSTAS MADEIRA-BETÃO

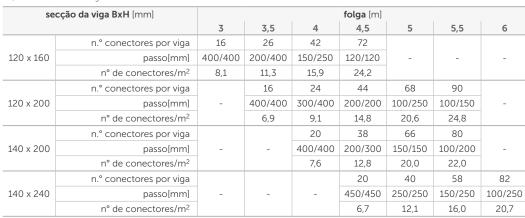
HIPÓTESES DE CÁLCULO	
Interstício vigas	660 mm
Espessura da laje de betão C20/25	50 mm
Limite de seta	w _{ist} = I/400
Limite de seta	W _{net,fin} = I/250
Norma de cálculo	EN 1995:2014

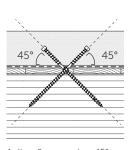


CARGAS				
peso próprio (g _{k1})	viga de madeira + soalho + laje de betão			
carga permanente não estrutural (g _{k2})	2 kN/m²			
sobrecarga variável (q _k)	2 kN/m²			
duração da carga variável	média			

CONECTOR CLC Ø8 x 160 - madeira lamelar GL24h (EN 14080:2013)

Espessura do soalho $t_s = 21 \text{ mm}$


secção da viga BxH [mm]		folga [m]							
		3	3,5	4	4,5	5	5,5	6	
	n.º conectores por viga	8 400/400	20	40	60	_	-	-	
120 x 160	passo[mm]		150/250	100/100	150/150 ⁽¹⁾				
	n° de conectores/m²	4,0	8,7	15,2	20,2				
	n.° conectores por viga	-	8	20	38	68	-	-	
120 x 200	passo[mm]		500/500	150/300	100/150	150/150 ⁽¹⁾			
	n° de conectores/m²		3,5	7,6	12,8	20,6			
140 x 200	n.° conectores por viga	-	-	16	34	52	92		
	passo[mm]			250/250	100/200	150/300 ⁽¹⁾	120/120(1)		
	n° de conectores/m²			6,1	11,4	15,8	25,3		
	n.° conectores por viga	_	-	-	18	34	54	80	
140 x 240	passo[mm]				250/250	120/200	100/100	150/150 ⁽¹	
	n° de conectores/m²				6,1	10,3	14,9	20,2	



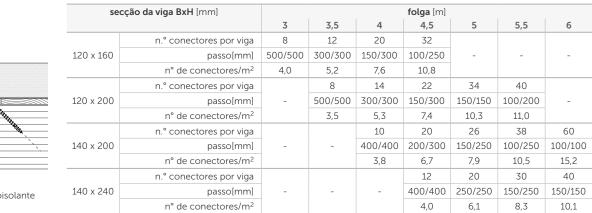
Aplicação a 45° sem lâmina fonoisolante

CONECTOR CLC Ø8 x 160 - madeira lamelar GL24h (EN 14080:2013)

Espessura do soalho $t_s = 21 \text{ mm}$

Aplicação cruzada a 45° com ou sem lâmina fonoisolante.

NOTAS

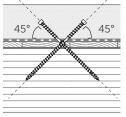

(1) Conectores dispostos em duas filas.

Para configurações de cálculo diferentes, está disponível gratuitamente a folha de cálculo CLC Calculator (www.holztechnic.com).

VALORES ESTÁTICOS

NORMA DE CÁLCULO EN 1995:2014

CONECTOR CLC Ø8 x 240 - madeira lamelada GL 24h (EN 14080:2013) com controlo de produção contínua Espessura do soalho $t_{\rm S}$ = 21 mm



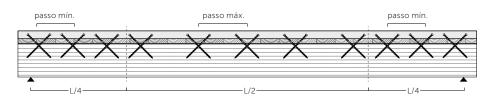
Aplicação a 45° sem lâmina fonoisolante

CONECTOR CLC Ø8 x 240 - madeira lamelar GL24h (EN 14080:2013)

Espessura do soalho t_s = 21 mm

secção da viga BxH [mm]		folga [m]							
		3	3,5	4	4,5	5	5,5	6	
	n.º conectores por viga	16	28	42	62	82	- - -	-	
120 x 160	passo[mm]	400/400	200/300	150/250	100/250	100/150			
	n° de conectores/m²	8,1	12,1	15,9	20,9	24,8			
	n.° conectores por viga	-	18	30	44	66	_	-	
120 x 200	passo[mm]		400/400	200/400	150/300	150/150			
	n° de conectores/m²		7,8	11,4	14,8	20,0			
	n.º conectores por viga	_	-	26	42	58	74	90	
140 x 200	passo[mm]			250/400	150/350	120/300	100/250	100/180	
	n° de conectores/m²			9,8	14,1	17,6	20,4	22,7	
140 x 240	n.° conectores por viga	-	-	-	30	44	58	82	
	passo[mm]				250/400	200/250	150/250	100/250	
	n° de conectores/m²				10,1	13,3	16,0	20,7	

Aplicação cruzada a 45° com ou sem lâmina fonoisolante.


NOTAS

(1) Conectores dispostos em duas filas.

Para configurações de cálculo diferentes, está disponível gratuitamente a folha de cálculo CLC Calculator (www.holztechnic.com).

PRINCÍPIOS GERAIS

• Entende-se por passo os valores do espaçamento mínimo e máximo em que os conectores são posicionados, respetivamente nos lados (L/4 - espaçamento mínimo) e na parte central da viga (L/2 - espaçamento máximo)

