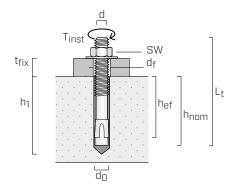
AB1 A4


ANCORANTE PESADO DE EXPANSÃO CE1 DE AÇO INOXIDÁVEL

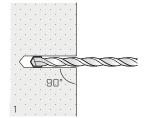
- CE opção 1 para betão fissurado e não fissurado
- Classe de desempenho para ações sísmicas C1
- Aço inoxidável A4
- Resistência ao fogo R120
- Dotado de porca e anilha acopladas
- Idóneo para materiais compactos
- Fixação do passante
- Expansão com controlo de par de aperto

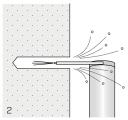
■ CÓDIGOS E DIMENSÕES

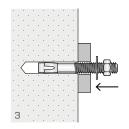
CÓDIGO	$d = d_0$	Lt	t _{fix}	h _{1,min}	h _{nom}	h _{ef}	d_f	SW	T _{inst}	pçs
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]	
AB1892A4	M8	92	30	60	50	45	9	13	20	50
AB18112A4		112	50	60	50	45	9	13	20	50
AB11092A4	M10	92	10	75	68	60	12	17	35	50
AB110132A4	M10	132	50	75	68	60	12	17	35	25
AB112118A4	M12	118	20	90	81	70	14	19	70	20
AB116138A4	M16	138	20	110	96	85	18	24	120	10

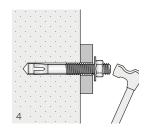
diâmetro do ancorante d_{0}

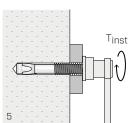
diâmetro do furo no suporte de betão

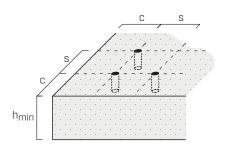

comprimento do ancorante $t_{\text{fix}} \\$ espessura máxima fixável profundidade mínima do furo h_1 profundidade de inserção h_{nom}


 $h_{\text{ef}} \\$ profundidade efectiva de ancoragem


 d_f diâmetro máximo do furo no elemento a ser fixado SW medida da chave


torque de aperto


MONTAGEM



INSTALAÇÃO

				AB1	IA4	
Entre-eixos e distâncias mínimas			M8	M10	M12	M16
Entre-eixo mínimo	s _{min}	[mm]	50	55	60	70
Entre-eixo minimo	para c ≥	[mm]	50	80	90	120
Distância mínima da borda	c _{min}	[mm]	50	50	55	85
Distancia minima da borda	para s ≥	[mm]	50	100	145	150
Espessura mínima do suporte de betão	h _{min}	[mm]	100	120	140	170
Entre-eixos e distâncias críticas				M10	M12	M16
Entre-eixo crítico	s _{cr,N} ⁽¹⁾	[mm]	135	180	210	255
Entre-eixo Critico	s _{cr,sp} ⁽²⁾	[mm]	180	240	280	340
Distância ovítica da banda	c _{cr,N} ⁽¹⁾	[mm]	68	90	105	128
Distância crítica da borda	c _{cr,sp} ⁽²⁾	[mm]	90	120	140	170

Para entre-eixos e distâncias inferiores àqueles críticos, haverá reduções nos valores de resistência em razão dos parâmetros de instalação.

VALORES ESTÁTICOS

Válidos para uma única ancoragem em ausência de entre-eixos e distâncias da borda, para betão de classe C20/25 de espessura elevada e com armadura esparsa.

VALORES CARACTERÍSTICOS

			TÃO SURADO		BETÃO FISSURADO				
	tração ⁽³⁾		corte ⁽⁴⁾		tração ⁽³⁾		corte		
barra	N _{Rk,p}	Υмр	$V_{Rk,s}$	ΥMs	N _{Rk,p}	Yмр	$V_{Rk,s}$	Υм	
Darra	[kN]		[kN]		[kN]		[kN]		
M8	9	1,8	11	1,25	5	1,8	11	$\gamma_{Mc} = 1,5^{(5)}$	
M10	16	1,8	17	1,25	9	1,8	17	$\gamma_{Ms} = 1,25^{(4)}$	
M12	20	1,8	25	1,25	12	1,8	25	$\gamma_{Ms} = 1,25^{(4)}$	
M16	35	1,5	47	1,25	20	1,5	47	$\gamma_{Ms} = 1,25^{(4)}$	

factor de incremento para N _{Rk,p} ⁽⁶⁾						
	C25/30	1,04				
	C30/37	1,10				
Ψ_{c}	C40/50	1,20				
	C50/60	1,28				

NOTAS:

- $^{(1)}$ Modo de rotura por formação do cone de betão por cargas de tração.
- $^{(2)}$ Modo de rotura por fissuração (splitting) por cargas de tração.
- $^{(3)}$ Modalidade de ruptura por desenfiamento (pull-out).
- (4) Modalidade de ruptura do material de aço.
- (5) Modo de rotura por destacamento (pry-out).
- (6) Fator de incremento para a resistência à tração (excluída a rotura do aço).

PRINCÍPIOS GERAIS:

- Os valores característicos são calculados de acordo com ETA-10/0076.
- Os valores de projecto são obtidos a partir dos valores característicos, desta forma: $R_d = R_k/\gamma_M$
 - Os coeficientes $\gamma_{\rm M}$ são apresentados na tabela em função da modalidade de rutura e de acordo com os certificados de produto.
- Para o cálculo de ancorantes com entre-eixos reduzidos, próximos à borda ou para a fixação sobre betão de classe de resistência superior ou de espessura reduzida ou com armadura densa, ver o documento ETA.
- Para planear ancoragens submetidas a carga sísmica, consulte o documento ETA de referência e as indicações do EOTA Technical Report 045.
- Para o cálculo de ancoragens sob a ação do fogo, consulte a ETA e o Technical Report 020.