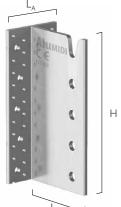
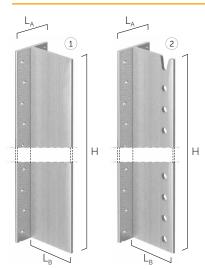
ALUMIDI HT

CE

LIGADOR OCULTO COM E SEM FUROS

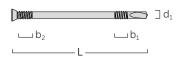
- Grande capacidade de carga. Versão sem furos para utilizar com cavilhas autoperfurantes SBD-HT e com furos para utilizar com cavilhas lisas STA
- Resistências em todas as direções: verticais, horizontais e axiais. Utilizável em ligações inclinadas
- Distâncias entre os furos otimizadas para ligações quer sobre madeira quer sobre betão armado


ALUMIDI HT SEM FUROS


CÓDIGO	H [mm]	L _A [mm]	L _B [mm]	pçs
ALUMIDIHT80	80	80	109	25
ALUMIDIHT120	120	80	109	25
ALUMIDIHT160	160	80	109	25
ALUMIDIHT200	200	80	109	15
ALUMIDIHT240	240	80	109	15
ALUMIDIHT2200	2200	80	109	1

ALUMIDI COM FUROS

CÓDIGO	Н	L _A	L_{B}	pçs
	[mm]	[mm]	[mm]	
ALUMIDI120L	120	80	109	25
ALUMIDI160L	160	80	109	25
ALUMIDI200L	200	80	109	15
ALUMIDI240L	240	80	109	15
ALUMIDI280L	280	80	109	15
ALUMIDI320L	320	80	109	8
ALUMIDI360L	360	80	109	8



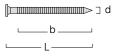
ALUMAXI COM E SEM FUROS

CÓDIGO		Н	L _A	L _B	pçs
		[mm]	[mm]	[mm]	
ALUMAXI2176	1	2176	130	172	1
ALUMAXI2176L	2	2176	130	172	1

FIXAÇÕES

SBD-HT | CAVILHA AUTO-PERFURANTE

d_1	CÓDIGO	L	b ₂	b_1	pçs
[mm]		[mm]	[mm]	[mm]	
	SBD75115H	115	10	15	50
7,5 TX 40	SBD75135H	135	10	15	50
	SBD75155H	155	20	15	50

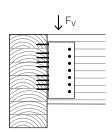

STA | PINO LISO

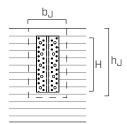
d ₁	CÓDIGO	L	aço	pçs
[mm]		[mm]		
	STA12120B	120	S235	100
12	STA12140B	140	S235	100
	STA12160B	160	S235	100
	STA16160B	160	S355	50
16	STA16180B	180	S355	50
	STA16200B	200	S355	50

LBA-HT | PREGO ANKER

d_1	CÓDIGO	L	b	pçs
[mm]		[mm]	[mm]	
4	HT4060	60	50	250
6	LBA6100	100	80	250

SBL | PARAFUSO DE CABEÇA REDONDA E SUB-CABEÇA PLANA


	d_1	CÓDIGO	L	b	pçs
	[mm]		[mm]	[mm]	
	5 TX 20	SBL560	60	56	200
	7 TX 30	LBS780	80	75	100
-	17.30	1			



HOLZ TECHNIC

VALORES ESTÁTICOS

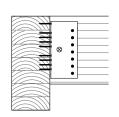
LIGAÇÃO MADEIRA-MADEIRA | F_V

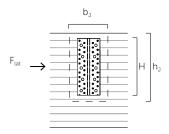
ALUMIDI HT sem furos com cavilhas autoperfurantes SBD-HT

	VIGA SECUNDÁRIA VIGA PRINCIPAL						
ALUMIDI HT				FIXAÇÃO CO	OM PREGOS	FIXAÇÃO COM I	PARAFUSOS
Н	b _J	hյ	cavilhas SBD-HT ⁽¹⁾ Ø7,5	pregos LBA-HT Ø4 x 60	R _{V,k}	parafusos SBL Ø5 x 60	$R_{V,k}$
[mm]	[mm]	[mm]	[pçs - Ø x L]	[pçs]	[kN]	[pçs]	[kN]
80	120	120	3 - Ø7,5 x 115	14	10,9	14	13,4
120	120	160	4 - Ø7,5 x 115	22	19,7	22	24,6
160	120	200	5 - Ø7,5 x 115	30	29,6	30	35,3
200	120	240	7 - Ø7,5 x 115	38	42,5	38	51,6
240	120	280	9 - Ø7,5 x 115	46	54,6	46	66,5
280(*)	140	320	10 - Ø7,5 x 135	54	71,8	54	85,0
320(*)	140	360	11 - Ø7,5 x 135	62	84,9	62	99,9
360(*)	160	400	12 - Ø7,5 x 155	70	103,6	70	119,9
400(*)	160	440	13 - Ø7,5 x 155	78	116,3	78	130,7
440(*)	160	480	14 - Ø7,5 x 155	86	134,5	86	145,6

ALUMIDI com orifícios com cavilhas STA

		VIGA S	SECUNDÁRIA	VIGA PRINCIPAL				
ALUMIDI HT				FIXAÇÃO CO	M PREGOS	FIXAÇÃO COM	PARAFUSOS	
Н	b _J	hյ	cavilhas STA ⁽²⁾ Ø12	pregos LBA-HT Ø4 x 60	R _{V,k}	parafusos SBL Ø5 x 60	$R_{V,k}$	
[mm]	[mm]	[mm]	[pçs - Ø x L]	[pçs]	[kN]	[pçs]	[kN]	
120	120	160	3 - Ø12 x 120	22	23,0	22	25,8	
160	120	200	4 - Ø12 x 120	30	34,5	30	40,6	
200	120	240	5 - Ø12 x 120	38	46,5	38	54,8	
240	120	280	6 - Ø12 x 120	46	60,9	46	68,4	
280	140	320	7 - Ø12 x 140	54	77,2	54	87,0	
320	140	360	8 - Ø12 x 140	62	93,2	62	102,4	
360	160	400	9 - Ø12 x 160	70	114,3	70	124,7	
400(*)	160	440	10 - Ø12 x 160	78	127,3	78	141,0	
440(*)	160	480	11 - Ø12 x 160	86	144,6	86	154,9	

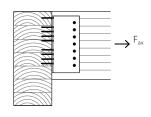

NOTAS

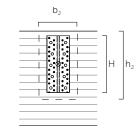

(*) Medida obtenível a partir da barra ALUMIDIHT2200.

MADEIRA-MADEIRA | Fv $^{(1)}$ Cavilhas autoperfurantes SBD Ø7,5: My,k = 42000 Nmm. $^{(2)}$ Cavilhas lisas STA Ø12: My,k = 69100 Nmm.

VALORES ESTÁTICOS

LIGAÇÃO MADEIRA-MADEIRA | F_{lat}





ALUMIDI HT sem furos com cavilhas autoperfurantes SBD-HT | ALUMDI com furos com cavilhas STA

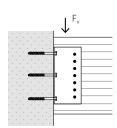
	VIGA SEC	UNDÁRIA ⁽¹⁾	VIGA PRINCIPAL ⁽²⁾		
ALUMIDI HT			pregos LBA-HT / parafusos SBL	R _{lat,k,alu}	R _{lat,k,beam} (3)
Н	b _J	h _J	Ø4 x 60 / Ø5 x 60		
[mm]	[mm]	[mm]	[pçs]	[kN]	[kN]
80	120	120	≥ 10	3,6	9,0
120	120	160	≥ 14	5,4	12,0
160	120	200	≥ 18	7,2	15,0
200	120	240	≥ 22	9,1	18,0
240	120	280	≥ 26	10,9	21,0
280(*)	140	320	≥ 30	12,7	28,1
320(*)	140	360	≥ 34	14,5	31,6
360(*)	160	400	≥ 38	16,3	40,1
400(*)	160	440	≥ 42	18,1	44,1
440(*)	160	480	> 46	19,9	48,1

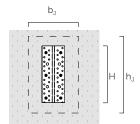
LIGAÇÃO MADEIRA-MADEIRA | F_{ax}

ALUMIDI HT sem furos com cavilhas autoperfurantes SBD-HT

		VIGA S	SECUNDÁRIA		VIGA F	RINCIPAL	
ALUMIDI HT				FIXAÇÃO CO	OM PREGOS	FIXAÇÃO COM	PARAFUSOS
ALONIDITI			cavilhas SBD-HT	pregos LBA-HT	R _{ax,k} ⁽³⁾	parafusos SBL	R _{ax,k} (3)
Н	bյ	hյ	Ø7,5	Ø4 x 60	*`ax,k	Ø5 x 60	*ax,k
[mm]	[mm]	[mm]	[pçs - Ø x L]	[pçs]	[kN]	[pçs]	[kN]
80	120	120	3 - Ø7,5 x 115	14	11,3	14	23,9
120	120	160	4 - Ø7,5 x 115	22	17,8	22	37,5
160	120	200	5 - Ø7,5 x 115	30	24,3	30	51,2
200	120	240	7 - Ø7,5 x 115	38	30,8	38	64,8
240	120	280	9 - Ø7,5 x 115	46	37,3	46	78,4
280	140	320	10 - Ø7,5 x 135	54	43,7	54	92,1
320	140	360	11 - Ø7,5 x 135	62	50,2	62	105,7
360	160	400	12 - Ø7,5 x 155	70	56,7	70	119,4
400(*)	160	440	13 - Ø7,5 x 155	78	63,2	78	133,0
440(*)	160	480	14 - Ø7,5 x 155	86	69,7	86	146,6

NOTAS


 $^{(\star)}$ Medida obtenível a partir da barra ALUMIDIHT2200.


- MADEIRA-MADEIRA | F_{lat} | F_{ax}

 (1) Os valores de resistência são válidos tanto para as cavilhas autoperfurantes SBD-HT Ø7,5, como para as cavilhas STA Ø12.
 (2) Os valores de resistência são válidos tanto para os pregos LBA-HT Ø4, como para os parafusos SBL Ø5.
 (3) Os valores de resistência são calculados para madeira lamelada GL24h.

VALORES ESTÁTICOS

LIGAÇÃO MADEIRA-BETÃO | F_V ANCORANTE QUÍMICO

ALUMIDI HT sem furos com cavilhas autoperfurantes SBD-HT

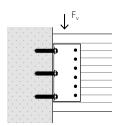
			VIGA SECUNDÁRIA madeira		VIGA PRIN betão não fis	
ALUMIDI HT			cavilhas :	SBD-HT	ancorante S	KR-CE
Н	$b_{\rm J}$	h _J	Ø7,5	R _{V,k timber}	Ø10 x 80	R _{V,d concrete}
[mm]	[mm]	[mm]	[pçs - Ø x L]	[kN]	[pçs]	[kN]
80	120	120	2 - Ø7,5 x 115	16,6	2	6,1
120	120	160	3 - Ø7,5 x 115	24,9	4	10,2
160	120	200	4 - Ø7,5 x 115	33,2	4	12,9
200	120	240	5 - Ø7,5 x 115	41,6	6	17,4
240	120	280	6 - Ø7,5 x 115	49,9	6	19,8
280(*)	140	320	6 - Ø7,5 x 135	55,1	8	24,3
320(*)	140	360	7 - Ø7,5 x 135	64,3	8	26,5
360(*)	160	400	7 - Ø7,5 x 155	71,1	10	31,1
400(*)	160	440	8 - Ø7,5 x 155	81,2	10	33,1
440(*)	160	480	9 - Ø7,5 x 155	91,4	12	38,8

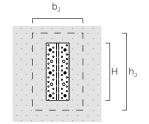
ALUMIDI com orifícios com cavilhas STA

	VIGA SECUNDÁRIA madeira				VIGA PRINCIPAL betão não fissurado	
ALUMIDI HT			cavilhas STA		ancorante SKR-CE	
Н	$b_{\rm J}$	hյ	Ø12	R _{V,k timber}	Ø10 x 80	R _{V,d concrete}
[mm]	[mm]	[mm]	[pçs - Ø x L]	[kN]	[pçs]	[kN]
120	120	160	3 - Ø12 x 120	35,5	4	10,2
160	120	200	4 - Ø12 x 120	47,3	4	12,9
200	120	240	5 - Ø12 x 120	59,1	6	17,4
240	120	280	6 - Ø12 x 120	70,9	6	19,8
280(*)	140	320	7 - Ø12 x 140	91,0	8	24,3
320(*)	140	360	8 - Ø12 x 140	104,0	8	26,5
360(*)	160	400	9 - Ø12 x 160	128,4	10	31,1
400(*)	160	440	10 - Ø12 x 160	142,7	10	33,1
440(*)	160	480	11 - Ø12 x 160	157,0	12	38,8

NOTAS

(*) Medida obtenível a partir da barra ALUMIDIHT2200.


MADEIRA-BETÃO


• Instalar as ancorantes parafusáveis SKR-CE duas a duas partindo de cima, com buchas em filas alternadas.

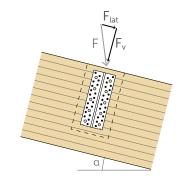
VALORES ESTÁTICOS

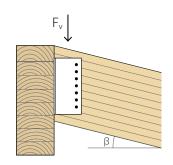
LIGAÇÃO MADEIRA-BETÃO | F_V ANCORANTE QUÍMICO

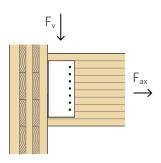
ALUMIDI HT sem furos com cavilhas autoperfurantes SBD-HT

	VIGA SECUNDÁRIA madeira				VIGA PRINCIPAL betão não fissurado	
ALUMIDI HT			cavilhas	SBD-HT	ancorante V-NEX ⁽¹⁾	
Н	$b_{\rm J}$	h _J	Ø7,5	R _{v,k timber}	Ø8 x 110	R _{v,d concrete}
[mm]	[mm]	[mm]	[pçs - Ø x L]	[kN]	[pçs]	[kN]
80	120	120	3 - Ø7,5 x 115	24,9	2	8,8
120	120	160	4 - Ø7,5 x 115	33,2	4	15,4
160	120	200	5 - Ø7,5 x 115	41,6	4	22,1
200	120	240	7 - Ø7,5 x 115	58,2	6	30,7
240	120	280	8 - Ø7,5 x 115	66,5	6	37,0
280(*)	140	320	10 - Ø7,5 x 135	91,9	8	48,7
320(*)	140	360	11 - Ø7,5 x 135	101,1	8	55,6
360(*)	160	400	12 - Ø7,5 x 155	121,9	10	64,4
400(*)	160	440	13 - Ø7,5 x 155	132,0	10	66,4
440(*)	160	480	14 - Ø7,5 x 155	142,2	12	80,0

ALUMIDI com orifícios com cavilhas STA

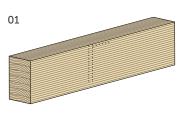

			VIGA SECUNDÁRIA madeira	1	VIGA PRINCIPAL betão não fissurado	
ALUMIDI HT			cavilhas STA		ancorante V-NEX ⁽¹⁾	
Н	$b_{\rm J}$	h _J	Ø12	R _{v,k timber}	Ø8 x 110	R _{v,d concrete}
[mm]	[mm]	[mm]	[pçs - Ø x L]	[kN]	[pçs]	[kN]
120	120	160	3 - Ø12 x 120	35,5	4	15,4
160	120	200	4 - Ø12 x 120	47,3	4	22,1
200	120	240	5 - Ø12 x 120	59,1	6	30,7
240	120	280	6 - Ø12 x 120	70,9	6	37,0
280(*)	140	320	7 - Ø12 x 140	91,0	8	48,7
320(*)	140	360	8 - Ø12 x 140	104,0	8	55,6
360(*)	160	400	9 - Ø12 x 160	128,4	10	64,4
400(*)	160	440	10 - Ø12 x 160	142,7	10	66,4
440(*)	160	480	11 - Ø12 x 160	157,0	12	80,0

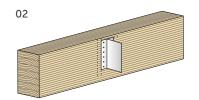

NOTAS

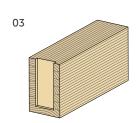

^(*) Medida obtenível a partir da barra ALUMIDIHT2200.

MADEIRA-BETÃO (1) Ancorante químico V-NEX de acordo com a ETA-20/0363 com barras roscadas (tipo INA) de classe de aço mínima $5.8 \text{ com h}_{ef} = 93 \text{ mm}$: Instalar as ancoragens duas a duas partindo de cima, com buchas em filas alternadas.

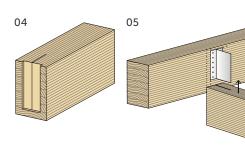
EXEMPLOS DE APLICAÇÃO

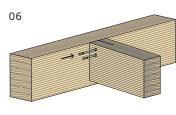


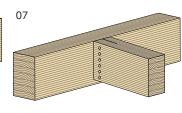


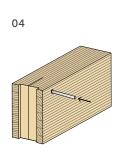


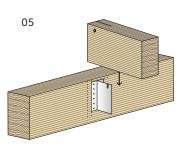
VIDEO

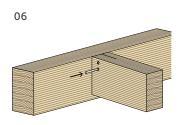

MONTAGEM

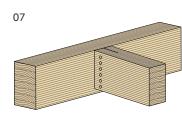




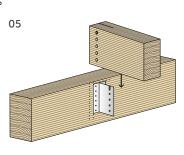

ALUMIDI HT SEM FUROS

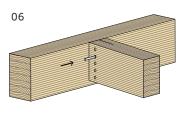


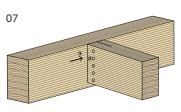




ALUMIDI HT SEM FUROS COM EXPANSÃO SUPERIOR







ALUMIDI HT COM FUROS

PRINCÍPIOS GERAIS

- Os valores de resistência do sistema de fixação são válidos para as hipóteses de cálculo definidas em tabela.
- Em fase de cálculo, considerou-se uma massa volúmica dos elementos de madeira equivalente a $\rho_k = 385 \text{ kg/m}^3$ e betão C20/25 com armação rara na ausência de distâncias da borda.
- Os coeficientes k_{mod} e y_M devem ser considerados em função da norma vigente utilizada para o cálculo. A dimensão e a verificação dos elementos de madeira e de betão devem ser feitas à parte.
- Em caso de tensão combinada, deve-se satisfazer a seguinte verificação:

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{lat,d}}{R_{lat,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 \le C$$

VALORES ESTÁTICOS | F_v

MADEIRA-MADEIRA

- Os valores característicos são conforme a norma EN 1995-1-1, de acordo com ETA-09/0361.
- Os valores de projeto são obtidos a partir dos valores característicos, desta forma:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

• Em alguns casos, a resistência ao corte R_{V,k} da ligação resulta ser particularmente elevada e pode superar a resistência ao corte da viga secundária. Portanto, aconselha-se a prestar uma particular atenção à verificação do corte da secção reduzida do elemento de madeira em correspondência com a conector.

VALORES ESTÁTICOS | F_{lat} | F_{ax}

MADEIRA-MADEIRA

Os valores característicos são conforme a norma EN 1995-1-1, de acordo com ETA-09/0361. Os valores de projeto são obtidos a partir dos valores característicos, desta forma:

$$R_{lat,d} = min \; \left\{ \begin{array}{c} \frac{R_{lat,k,alu}}{\gamma_{M,alu}} \\ \\ \frac{R_{lat,k,beam} \cdot \kappa_{mod}}{\gamma_{M,T}} \end{array} \right. \label{eq:Ratio}$$

$$R_{ax,d} = \frac{R_{ax,k} \cdot k_{mod}}{\gamma_M}$$

com $y_{M,T}$ coeficiente parcial do material madeira

VALORES ESTÁTICOS | F_v

MADEIRA-BETÃO

Os valores característicos do lado da madeira estão em conformidade com a norma EN 1995-1-1, de acordo com a ETA-09/0361. Os valores de projeto dos ancorantes para betão são calculados de acordo com as respetivas Avaliações Técnicas Europeias. Os valores de resistência de projeto são obtidos a partir dos valores indicados na tabela, desta forma:

$$R_d = min \quad \begin{cases} \frac{R_{k, timber} \cdot k_{mod}}{\gamma_M} \\ R_{d, concrete} \end{cases}$$