
ANCORANTE PESADO DE EXPANSÃO CE1

- CE opção 1 para betão fissurado e não fissurado
- Classe de desempenho para ações sísmicas C1 (M10-M16) e C2 (M12-M16)
- Aço carbónico electrozincado
- Resistência ao fogo R120
- Dotado de porca e anilha acopladas
- Idóneo para materiais compactos
- Fixação do passante
- Expansão com controlo de par de aperto

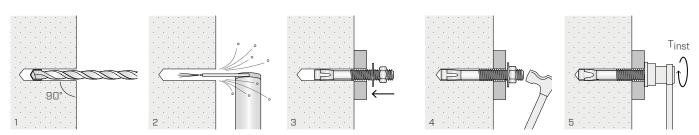
■ CÓDIGOS E DIMENSÕES

CÓDIGO	$d = d_0$	L _t	t _{fix}	h _{1,min}	h _{nom}	h _{ef}	d_f	SW	T _{inst}	pçs
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[Nm]	
AB1875	M8	75	9	60	55	48	9	13	15	100
AB1895	M8	95	29	60	55	48	9	13	15	50
AB18115	M8	115	49	60	55	48	9	13	15	50
AB110115	M10	115	35	75	68	60	12	17	40	25
AB110135	M10	135	55	75	68	60	12	17	40	25
AB112100	M12	100	4	85	80	70	14	19	60	25
AB112120	M12	120	24	85	80	70	14	19	60	25
AB112150	M12	150	54	85	80	70	14	19	60	25
AB112180	M12	180	84	85	80	70	14	19	60	25
AB116145	M16	145	28	105	97	85	18	24	100	10

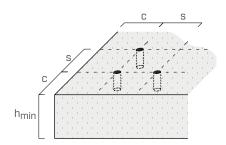
diâmetro do ancorante

 d_0

diâmetro do furo no suporte de betão


comprimento do ancorante Lt t_{fix} espessura máxima fixável $h_{\scriptscriptstyle 1}$ profundidade mínima do furo profundidade de inserção h_{nom}

h_{ef} profundidade efectiva de ancoragem


 $\, d_f \,$ diâmetro máximo do furo no elemento a ser fixado SW medida da chave

 \textbf{T}_{inst} torque de aperto

MONTAGEM

INSTALAÇÃO

				Al	B1	
Entre-eixos e distâncias mínimas			M8	M10	M12	M16
Entre-eixo mínimo	s _{min}	[mm]	50	60	70	85
Distância mínima da borda	c _{min}	[mm]	50	60	70	85
Espessura mínima do suporte de betão	h _{min}	[mm]	100	120	140	170
Entre-eixos e distâncias críticas	M8	M10	M12	M16		
Entre-eixo crítico	s _{cr,N} ⁽¹⁾	[mm]	144	180	210	255
Entre-eixo Critico	s _{cr,sp} ⁽²⁾	[mm]	288	300	350	425
Distância crítica da borda	C _{cr,N} ⁽¹⁾	[mm]	72	90	105	128
Distancia Critica da Dorda	c _{cr,sp} ⁽²⁾	[mm]	144	150	175	213

Para entre-eixos e distâncias inferiores àqueles críticos, haverá reduções nos valores de resistência em razão dos parâmetros de instalação.

VALORES ESTÁTICOS

Válidos para uma única ancoragem em ausência de entre-eixos e distâncias da borda, para betão de classe C20/25 de espessura elevada e com armadura esparsa.

VALORES CARACTERÍSTICOS

			rão SURADO		BETÃO FISSURADO				
	tração ⁽³⁾		corte ⁽⁴⁾		traçã	ăо ⁽³⁾	corte		
	N _{Rk,p}	Yмр	$V_{Rk,s}$	YMs	$N_{Rk,p}$	YMp	V_{Rk}	Υм	
	[kN]		[kN]		[kN]		[kN]		
M8	9	1,8	11,0	1,25	6	1,8	12,0	$\gamma_{Mc} = 1.5^{(5)}$	
M10	16	1,5	17,4	1,25	9	1,5	17,4	$\gamma_{Ms} = 1.25^{(4)}$	
M12	25	1,5	25,3	1,25	16	1,5	25,3	$\gamma_{Ms} = 1.25^{(4)}$	
M16	35	1,5	47,1	1,25	25	1,5	47,1	$\gamma_{Ms} = 1,25^{(4)}$	

factor de incremento para N _{Rk,p} ⁽⁶⁾							
Ψ_{c}	C30/37	1,16					
	C40/50	1,31					
	C50/60	1,41					

NOTAS:

- $^{(1)}$ Modo de rotura por formação do cone de betão por cargas de tração.
- (2) Modo de rotura por fissuração (splitting) por cargas de tração.
- $^{(3)}$ Modalidade de ruptura por desenfiamento (pull-out).
- ⁽⁴⁾ Modalidade de ruptura do material de aço.
- $^{(5)}$ Modo de rotura por destacamento (pry-out).
- (6) Fator de incremento para a resistência à tração (excluída a rotura do aço).

PRINCÍPIOS GERAIS:

- Os valores característicos são calculados de acordo com ETA-17/0481.
- Os valores de projecto são obtidos a partir dos valores característicos, desta forma: $R_d = R_k/\gamma_M$
 - Os coeficientes γ_{M} são apresentados na tabela em função da modalidade de rutura e de acordo com os certificados de produto.
- Para o cálculo de ancorantes com entre-eixos reduzidos, próximos à borda ou para a fixação sobre betão de classe de resistência superior ou de espessura reduzida ou com armadura densa, ver o documento ETA.
- Para planear ancoragens submetidas a carga sísmica, consulte o documento ETA de referência e as indicações do EOTA Technical Report 045.
- Para o cálculo de ancoragens sob a ação do fogo, consulte a ETA e o Technical Report 020