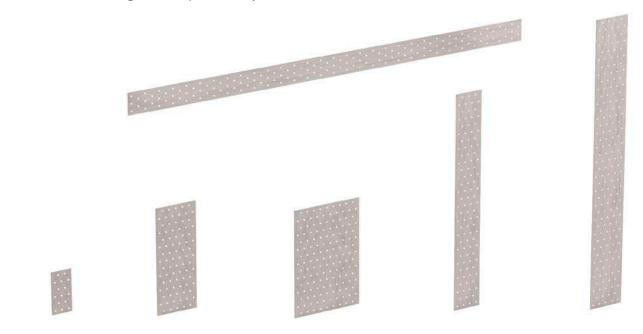


CE

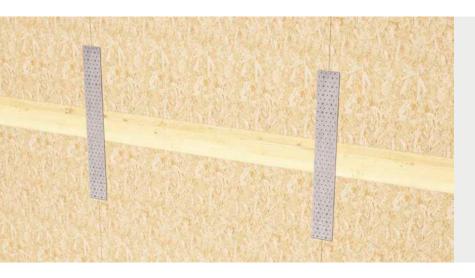
CHAPAS FURADAS

AMPLA GAMA


Disponíveis em numerosos formatos, são projectadas para satisfazer todas as exigências projectuais e de construção, das simples ligações de vigas e barrotes às mais importantes ligações entre planos e patamares.

PRONTAS AO USO

Os formatos satisfazem todas as exigências mais comuns e minimizam os tempos de instalação. Óptima relação custo/prestação.


CERTIFICADAS

Ideais para ligações estruturais que requerem resistências à tração. Geometria e material garantidos pela marcação CE.

CARATERÍSTICAS

FOCUS	fixação de tração			
ALTURA	de 120 a 1200 mm			
ESPESSURA de 1,5 a 2,5 mm				
FIXAÇÕES LBA, LBS				

MATERIAL

Chapas furadas de aço carbónico electrogalvanizado.

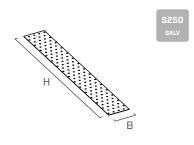
CAMPOS DE EMPREGO

Ligações madeira-madeira

- madeira maciça e madeira lamelar
- CLT, LVL
- painéis à base de madeira

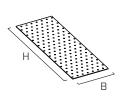
TRAÇÃO

Formatos dimensionados para as ligações mais comuns entre elementos de madeira e para todas as aplicações que requerem valores de resistência à tração. Versões de 1200 mm, ideais para ligações estruturais.

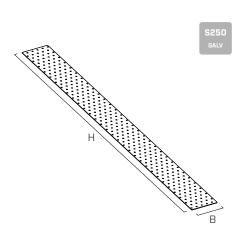

MADEIRA-MADEIRA

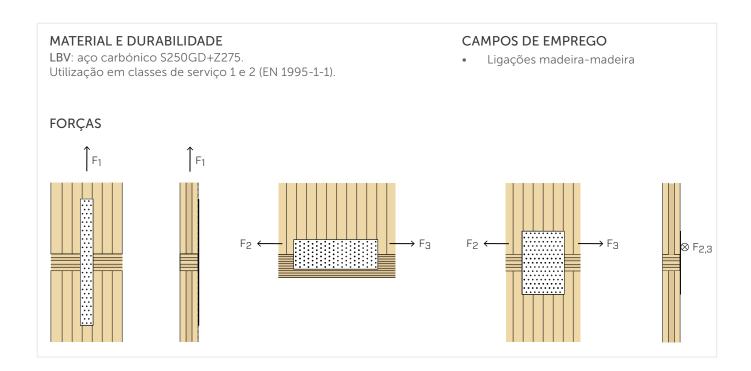
Ideal para resolver pontualmente situações peculiares que requerem a transferência de forças de tração entre elementos de madeira como vigas, painéis estruturais e revestimentos.

■ CÓDIGOS E DIMENSÕES


LBV 1,5 mm

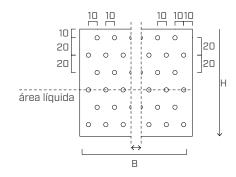
CÓDIGO	В	Н	n Ø5	s	2))))	pçs
	[mm]	[mm]	pçs	[mm]		
LBV60600	60	600	75	1,5	•	10
LBV60800	60	800	100	1,5	•	10
LBV80600	80	600	105	1,5	•	10
LBV80800	80	800	140	1,5	•	10
LBV100800	100	800	180	1,5	•	10


LBV 2,0 mm


CÓDIGO	В	Н	n Ø5	s		pçs
	[mm]	[mm]	pçs	[mm]		
LBV40120	40	120	9	2,0	•	200
LBV40160	40	160	12	2,0	•	50
LBV60140	60	140	18	2,0	•	50
LBV60200	60	200	25	2,0	•	100
LBV60240	60	240	30	2,0	•	100
LBV80200	80	200	35	2,0	•	50
LBV80240	80	240	42	2,0	•	50
LBV80300	80	300	53	2,0	•	50
LBV100140	100	140	32	2,0	•	50
LBV100200	100	200	45	2,0	•	50
LBV100240	100	240	54	2,0	•	50
LBV100300	100	300	68	2,0	•	50
LBV100400	100	400	90	2,0	•	20
LBV100500	100	500	112	2,0	•	20
LBV120200	120	200	55	2,0	•	50
LBV120240	120	240	66	2,0	•	50
LBV120300	120	300	83	2,0	•	50
LBV140400	140	400	130	2,0	•	15
LBV160400	160	400	150	2,0	•	15
LBV200300	200	300	142	2,0	•	15

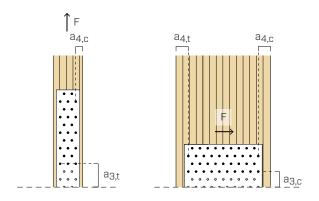
LBV 2,0 x 1200 mm

25						
CÓDIGO	В	Н	n Ø5	s	2))))	pçs
	[mm]	[mm]	pçs	[mm]		
LBV401200	40	1200	90	2,0	•	20
LBV601200	60	1200	150	2,0	•	20
LBV801200	80	1200	210	2,0	•	20
LBV1001200	100	1200	270	2,0	•	10
LBV1201200	120	1200	330	2,0	•	10
LBV1401200	140	1200	390	2,0	•	10
LBV1601200	160	1200	450	2,0	•	10
LBV1801200	180	1200	510	2,0	•	10
LBV2001200	200	1200	570	2,0	•	5
LBV2201200	220	1200	630	2,0	•	5
LBV2401200	240	1200	690	2,0	•	5
LBV2601200	260	1200	750	2,0	•	5
LBV2801200	280	1200	810	2,0	•	5
LBV3001200	300	1200	870	2,0	•	5
LBV4001200	400	1200	1170	2,0	•	5



■ PRODUTOS ADICIONAIS - FIXAÇÕES

tipo	descrição		d	suporte	pág.
			[mm]		
LBA	prego Anker		4	27711)	548
LBS	parafuso para chapas	()) 1111111111111+	5		552


GEOMETRIA

В	furos na área líquida	В	furos na área líquida	В	furos na área líquida
[mm]	pçs	[mm]	pçs	[mm]	pçs
40	2	140	7	240	12
60	3	160	8	260	13
80	4	180	9	280	14
100	5	200	10	300	15
120	6	220	11	400	20

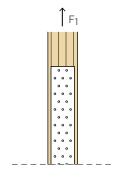
■ INSTALAÇÃO

MADEIRA - DISTÂNCIAS MÍNIMAS

Ângulo entre força e fibras α = 0°		prego Anker	parafuso
		LBA Ø4	LBS Ø5
Ligador lateral - borda sem tensão	a _{4,c} [mm]	≥ 20	≥ 25
Ligador - extremidade com carga	a _{3,t} [mm]	≥ 60	≥ 75

Ângulo entre força e fibras α = 90°		prego Anker	parafuso
		LBA Ø4	LBS Ø5
Ligador lateral - borda com carga	a _{4,t} [mm]	≥ 28	≥ 50
Ligador lateral - borda sem tensão	a _{4,c} [mm]	≥ 20	≥ 25
Ligador - extremidade sem carga	a _{3,c} [mm]	≥ 40	≥ 50

■ VALORES ESTÁTICOS | LIGAÇÃO DE TRAÇÃO MADEIRA-MADEIRA


RESISTÊNCIA DO SISTEMA

A resistência à tração do sistema $R_{1,d}$ é a mínima entre a resistência à tração do lado da chapa R_{ax,d} e a resistência ao corte dos conectores utilizados para

Se os conectores estiverem dispostos em várias filas consecutivas e a direção da carga for paralela à fibra, deve ser aplicado o seguinte critério de dimensionamento.

$$R_{1,d} = min \begin{cases} R_{ax,d} \\ \sum n_i \cdot m_i^k \cdot R_{v,d} \end{cases} \qquad k = \begin{cases} 0.85 & LBA & \emptyset = 4 \\ 0.75 & LBA & \emptyset = 5 \end{cases}$$

Em que mi corresponde ao número de filas de conectores paralelos à fibra e ni ao número de conectores dispostos na mesma fila.

CHAPA - RESISTÊNCIA À TRAÇÃO

OTIAL A REGIOTENDIA A TRAGAG					
				VALORES CARACTERÍSTICOS	
tipo	В	s	furos na área líquida	R _{ax,k}	
	[mm]	[mm]	pçs	[kN]	
	60	1,5	3	20,0	
LBV 1,5 mm	80	1,5	4	26,7	
	100	1,5	5	33,4	
	40	2,0	2	17,8	
	60	2,0	3	26,7	
	80	2,0	4	35,6	
	100	2,0	5	44,6	
	120	2,0	6	53,5	
	140	2,0	7	62,4	
	160	2,0	8	71,3	
LBV 2,0 mm	180	2,0	9	80,2	
	200	2,0	10	89,1	
	220	2,0	11	98,0	
	240	2,0	12	106,9	
	260	2,0	13	115,8	
	280	2,0	14	124,7	
	300	2,0	15	133,7	
	400	2,0	20	178,2	

■ EXEMPLO DE CÁLCULO | LIGAÇÃO MADEIRA-MADEIRA

Na figura da página 391, é mostrado um exemplo de cálculo do tipo de ligação, utilizando também uma fita furada LBB para comparação.

PRINCÍPIOS GERAIS:

• Os valores de projecto (lado da chapa) são obtidos a partir dos valores característicos, desta maneira:

$$R_{ax,d} = \frac{R_{ax,k}}{\gamma_{steel}}$$

 γ_{steel} deve ser considerado como γ_{M2}

Os coeficientes γ_{M2} devem ser considerados em função da norma vigente utilizada para o cálculo.

- A dimensão e a verificação dos elementos de madeira devem ser feitas à parte.
- Aconselha-se a dispor os conectores de maneira simétrica em relação à recta de acção da força.