VGZ EVO

ПОЛНОНАРЕЗНЫЕ ШУРУПЫ С ЦИЛИНДРИЧЕСКОЙ ГОЛОВКОЙ

ПОКРЫТИЕ С4 EVO

многослойное покрытие толщиной 20 µm с поверхностным слоем из эпоксидной смолы и алюминиевых чешуек. Отсутствует ржавчина после 1440 часов испытания в соляном тумане согласно ISO 9227. Могут иметь наружное применение при классе эксплуатации 3 и условиях атмосферной коррозии класса С4.

ДЕРЕВО С СОДЕРЖАНИЕМ ХИМИЧЕСКИ АГРЕССИВНЫХ ВЕЩЕСТВ

Идеально подходят для применения с деревянными элементами, содержащими дубильные вещества, обработанные пропиточными средствами или подвергнувшиеся другой химической обработке.

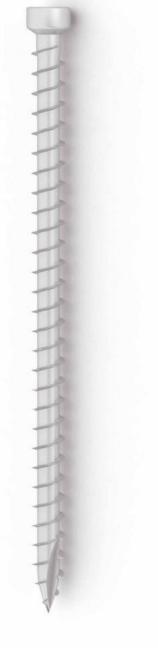
РАСТЯЖЕНИЕ

Полная резьба и высокопрочная сталь ($f_{v,k} = 1000 \text{ H/мм}^2$) обеспечивают повышенное сопротивление растяжению.

ИСПОЛЬЗОВАНИЕ В СТРОИТЕЛЬСТВЕ

Утверждены для использования в строительстве для соединений, которые подвергаются напряжениям с в любых направлениях относительно волокон ($\alpha = 0^{\circ} - 90^{\circ}$). Минимальные уменьшенные расстояния.

ОСНОВНАЯ	коррозионная активность класса С4
ГОЛОВКА	цилиндрическая, потайная
ДИАМЕТР	5,3 5,6 7,0 9,0 мм
ДЛИНА	от 80 мм до 360 мм



Углеродистая сталь с покрытием толщиной 20 µm с повышенной стойкостью к коррозии.

ОБЛАСТИ ПРИМЕНЕНИЯ

- панели на древесной основе
- массивное дерево и клееный брус
- CLT, ЛВЛ
- дерево с высокой плотностью
- дерево с содержанием химически агрессивных веществ (дубильные вещества)
- химически обработанное дерево

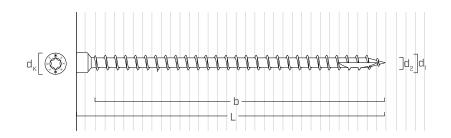
Классы эксплуатации 1, 2 и 3.

HARDWOOD FRAME

Идеально подходит для наружных сооружений и крепления элементов из агрессивных сортов древесины, содержащих таннин. Выполнена сертификация значений для завинчивания шурупов параллельно волокнам.

ДЕРЕВЯННЫЙ КАРКАС

Выполнены испытания, сертификация и расчет значений для CLT и древесных материалов с высокой плотностью, таких как Microllam® или ЛВЛ.



Крепление деревянных ферм наружных сооружений.

Реконструкция существующих деревянных полов с использованием балок из клееного бруса и шурупов VGZ.

■ ГЕОМЕТРИЯ И МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Номинальный диаметр	d ₁	[MM]	5,3	5,6	7	9
Диаметр головки	d _K	[MM]	8,00	8,00	9,50	11,50
Диаметр буравчика	d_2	[MM]	3,60	3,80	4,60	5,90
Диаметр предварительно просверленного отверстия ⁽¹⁾	d _V	[MM]	3,5	3,5	4,0	5,0
Нормативный момент пластической деформации	$M_{y,k}$	[Нм]	9,2	10,6	14,2	27,2
Нормативное сопротивление выдергиванию ⁽²⁾	f _{ax,k}	[H/мм ²]	11,7	11,7	11,7	11,7
Принятая плотность	ρ_{a}	[KT/M ³]	350	350	350	350
Нормативное сопротивление растяжению	f _{tens,k}	[ĸH]	11,0	12,3	15,4	25,4
Нормативное сопротивление пластиче- ской деформации	$f_{y,k}$	[H/MM ²]	1000	1000	1000	1000

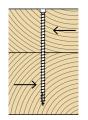
 $^{^{(1)}}$ Предварительное засверливание только для мягких пород древесины.

 $^{^{(2)}}$ Только для мягких пород древесины - макс. плотность 440 кг/м 3 .

Для применения с другими или твёрдыми материалами смотрите ETA-11/0030.

■ КОДЫ И РАЗМЕРЫ

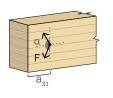
d ₁	код	L	b	шт.
[MM]		[MM]	[MM]	
	VGZEVO580	80	70	50
5,3 TX 25	VGZEVO5100	100	90	50
1/(25	VGZEVO5120	120	110	50
5,6	VGZEVO5140	140	130	50
TX 25	VGZEVO5160	160	150	50
	VGZEVO7140	140	130	25
_	VGZEVO7180	180	170	25
7 TX 30	VGZEVO7220	220	210	25
	VGZEVO7260	260	250	25
	VGZEVO7300	300	290	25


d ₁	КОД	L	b	шт.
[MM]		[MM]	[MM]	
	VGZEVO9200	200	190	25
	VGZEVO9240	240	230	25
9 TX 40	VGZEVO9280	280	270	25
17,40	VGZEVO9320	320	310	25
	VGZEVO9360	360	350	25

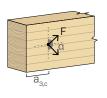
МИНИМАЛЬНЫЕ РАССТОЯНИЯ ДЛЯ ШУРУПОВ, РАБОТАЮЩИХ НА СРЕЗ ⁽¹⁾

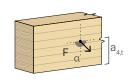
Для таблицы Минимальные рекомендуемые расстояния для шурупов, работающих на растяжение см. на стр. 143

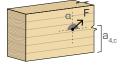
Угол приложения нагрузки к волокнам $\alpha = 90^{\circ}$


		ШУРУПЫ		I, ЗАВИНЧЕ ПРОСВЕРЛІ			ЛЬНО				
d_1	[MM]		5,3	5,6	7	9		5,3	5,6	7	9
a ₁	[MM]	5·d	27	28	35	45	4·d	21	22	28	36
a ₂	[MM]	3·d	16	17	21	27	4·d	21	22	28	36
a _{3,t}	[MM]	12·d	64	67	84	108	7⋅d	37	39	49	63
a _{3,c}	[MM]	7⋅d	37	39	49	63	7⋅d	37	39	49	63
a _{4,t}	[MM]	3·d	16	17	21	27	7⋅d	37	39	49	63
a _{4,c}	[MM]	3·d	16	17	21	27	3·d	16	17	21	27

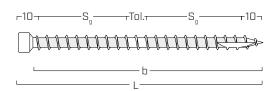
		ШУРУПЫ, Г	· ·	ЗАВИНЧЕН			ЕЛЬНО				
d_1	[MM]		5,3	5,6	7	9		5,3	5,6	7	9
a ₁	[MM]	12·d	64	67	84	108	5·d	27	28	35	45
a ₂	[MM]	5·d	27	28	35	45	5·d	27	28	35	45
a _{3,t}	[MM]	15∙d	80	84	105	135	10·d	53	56	70	90
a _{3,c}	[MM]	10·d	53	56	70	90	10·d	53	56	70	90
a _{4,t}	[MM]	5·d	27	28	35	45	10·d	53	56	70	90
a _{4,c}	[MM]	5·d	27	28	35	45	5·d	27	28	35	45


d = номинальный диаметр шурупа


нагруженный конец -90° < α < 90°


ненагруженный конец 90° < α < 270°

нагруженный край $0^{\circ} < \alpha < 180^{\circ}$


ненагруженный край 180° < α < 360°

ПРИМЕЧАНИЯ.

- (1) Минимальные расстояния соответствуют стандарту EN 1995:2014 при плотности деревянных элементов $\rho_k \le 420~{\rm kr/m}^3.$
- Для соединений металл дерево минимальный шаг (a1, a2) может приниматься с коэффициентом 0,7.
- Для соединений панель дерево минимальный шаг (${\bf a_1},\,{\bf a_2}$) может приниматься с коэффициентом 0,85.

ЭФФЕКТИВНАЯ ДЛИНА РЕЗЬБЫ ДЛЯ РАСЧЁТА

$$b = L - 10 \text{ MM}$$

$$S_q = (L - 10 \text{ MM} - 10 \text{ MM} - \text{Tol.})/2$$

длина резьбовой части шурупа

представляет собой половину длины резьбовой части за вычетом допуска (Tol.) на завинчивание 10 мм

Значения сопротивления выдергиванию, срезу и пластической деформации в соединении дерево - дерево рассчитывались с учетом положения центра тяжести шурупа относительно плоскости среза.

СТАТИЧЕСКИЕ ЗНАЧЕНИЯ

ТИПИЧНЫЕ ЗНАЧЕНИЯ EN 1995:2014

		РАСТЯЖЕНИЕ[1]							
геом	иетрия	выдергиван	ие полнонарезн	ой резьбы ⁽²⁾	выд на	растяжение стали			
			A			A A A		← Дининининининин	
				древесина			древесина	металл	
d ₁	L	b	A _{min}	R _{ax,k}	S _g	A _{min}	R _{ax,k}	R _{tens,k}	
[MM]	[MM] 80	[MM] 70	[MM] 90	[кН] 5,02	[MM] 25	[MM] 45	[ĸH]	[ĸH]	
5,3	100	90	110	6,46	35	55	2,51	11,0	
5,5	120	110	130	7,89	45	65	3,23	11,0	
	140	130	150	9,86	55	75	4,17		
5,6	160	150	170	11,37	65	85	4,93	12,3	
	140	130	150	12,32	55	75	5,21		
	180	170	190	16,11	75	95	7,11		
7	220	210	230	19,90	95	115	9,00	15,4	
	260	250	270	23,69	115	135	10,90	, , ,	
	300	290	310	27,48	135	155	12,79		
	200	190	210	23,15	85	105	10,36		
	240	230	250	28,02	105	125	12,79		
9	280	270	290	32,90	125	145	15,23	25,4	
	320	310	330	37,77	145	165	17,67		
	360	350	370	42,64	165	185	20,10		

ПРИМЕЧАНИЯ.

(1) Расчетное сопротивление шурупов растяжению является наименьшим из следующих значений: расчетного сопротивления со стороны древесины $(R_{\mathsf{ax,d}})$ и расчетного сопротивления со стороны стали $(R_{\mathsf{tens,d}})$.

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{\gamma_{M}} \\ \frac{R_{tens,k}}{\gamma_{M2}} \end{cases}$$

(2) Сопротивление выдергиванию резьбовой части шурупа по оси рассчитывалось при угле 90° между шурупом и волокнами и эффективной длине резьбы b или $S_{\underline{0}}$.

Промежуточные значения S_g можно получить линейной интерполяцией.

(3) Сопротивление выдергиванию резьбовой части шурупа по оси рассчитывалось при угле 45° между шурупом и волокнами и эффективной длине резьбы $S_{\rm g}$.

СТАТИЧЕСКИЕ ЗНАЧЕНИЯ

	CPE3					ИЧЕСКАЯ ДЕФОР	МАЦИЯ	
	геометрия		дерево	- дерево	дерево - дерево ⁽³⁾			
		A				→ 5/1/45° ←	A B	
d ₁	L	S _g	A _{min}	$R_{V,k}$	A _{min}	B _{min}	$R_{V,k}$	
[MM]	[MM]	[MM]	[MM]	[ĸH]	[MM]	[MM]	[ĸH]	
	80	25	40	1,77	30	50	1,27	
5,3	100	35	50	2,25	40	55	1,78	
	120	45	60	2,45	45	60	2,28	
F. C	140	55	70	2,84	50	70	2,95	
5,6	160	65	80	3,03	60	75	3,48	
	140	55	70	3,55	55	70	3,69	
	180	75	90	4,02	65	85	5,03	
7	220	95	110	4,49	80	100	6,37	
	260	115	130	4,49	95	110	7,71	
	300	135	150	4,49	110	125	9,05	
	200	85	100	5,99	75	90	7,32	
	240	105	120	6,60	90	105	9,05	
9	280	125	140	6,80	105	120	10,77	
	320	145	160	6,80	115	135	12,49	
	360	165	180	6,80	130	145	14,21	

ОСНОВНЫЕ ПРИНЦИПЫ:

- Нормативные значения соответствуют стандарту EN 1995:2014 и документу ETA-11/0030.
- Расчетные величины могут быть получены на основании нормативных значений следующим образом:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

Коэффициенты γ_{M} и k_{mod} должны приниматься в соответствии с действующими правилами, примененными для выполнения расчета.

- Прочностные и геометрические характеристики шурупов регламентируются документом ETA-11/0030.
- Для расчета плотность дерева принимается равной ρ_{k} = 420 кг/м 3 .

- Определение размеров и контроль деревянных элементов должны выполняться отдельно.
- Нормативное сопротивление срезу рассчитывалось для шурупов, завинченных без предварительного засверливания. Если шурупы завинчиваются в предварительно просверленное отверстие, можно получить более высокие значения сопротивления.
- Значения сопротивления выдергиванию, срезу и пластической деформации в соединении дерево - дерево рассчитывались с учетом положения центра тяжести шурупа относительно плоскости среза.